I am trying to mask my binary image in a way, that it only shows certain labels (selected by me).
This piece of code does what I want. Can someone please tell me the better way to achieve this? I suppose you can do it with masks without iterating over each pixel, but the code examples that I find are always in C++ and I can't find out how to do it in Java.
Mat labels = new Mat();
Mat stats = new Mat();
Mat centroids = new Mat();
List<Integer> labelsToKeep = new ArrayList<>();
Imgproc.connectedComponentsWithStats(binary, labels, stats, centroids, 4);
for (int i=0; i < stats.height(); i++) {
// for each label
if (someCondition)
labelsToKeep.add(i);
}
Mat mask = new Mat(binary.rows(), binary.cols(), binary.type());
for (int i=0; i < binary.rows(); i++) {
for (int j=0; j < binary.cols(); j++) {
// for each pixel
double[] data = new double[1];
if (labelsToKeep.contains((int)labels.get(i,j)[0]))
data[0] = 255;
else
data[0] = 0;
mask.put(i,j, channels);
}
}
Mat masked = new Mat();
binary.copyTo(masked, mask);
Regards
Related
I have to do develop a similar algorithm as in Remove top section of image above border line to detect text document, but in Java 1.8 using JavaCV.
The method signature in Python is
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
However in Java it appears to be:
MatVector mt = new MatVector();
findContours(dst, mt, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
I'm stuck into finding the contours and sorting them from biggest to lowest. How do I go about sorting from biggest to lower contours?
My code:
Mat image = imread(imagePath);
Mat gray = new Mat();
cvtColor(mat, gray, COLOR_BGR2GRAY);
Mat grayImg = convertToGray(mat);
GaussianBlur(grayImg, grayImg, new Size(3, 3), 0);
Mat dst = new Mat();
threshold(grayImg, dst, 0, 255,THRESH_BINARY + THRESH_OTSU);
// Find contours and sort for largest contour
MatVector mt = new MatVector();
findContours(dst, mt, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
How to access contours suggestion from https://github.com/bytedeco/javacv/issues/1270:
// accessing contours
MatVector contours = ...
for (int i = 0; i < contours.size(); ++i) {
IntIndexer points = contours.get(i).createIndexer();
int size = (int) points.size(0); // points are stored in a Mat with a single column and multiple rows, since size(0), each element has two channels - for x and y - so the type is CV_32SC2 for integer points
for (int j = 0; j < size; ++j) {
int x = points.get(2 * j);
int y = points.get(2 * j + 1);
// do something with x and y
}
}
Thank you
As #fmw42 said, I refactored the code to look into the contourArea().
See below,
Mat mask = new Mat();
Mat gray = new Mat();
Mat denoised = new Mat();
Mat bin = new Mat();
Mat hierarchy = new Mat();
MatVector contours = new MatVector();
cvtColor(mat, gray, COLOR_BGR2GRAY);
//Normalize
GaussianBlur(gray, denoised, new Size(5, 5), 0);
threshold(denoised, mask, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
normalize(gray, gray, 0, 255, NORM_MINMAX, -1, mask);
// Convert image to binary
threshold(gray, bin, 150, 255, THRESH_BINARY);
// Find contours
findContours(bin, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE);
long contourCount = contours.size();
System.out.println("Countour count " + contourCount);
double maxArea = 0;
int maxAreaId = 0;
for (int i = 0; i < contourCount; ++i) {
// Calculate the area of each contour
Mat contour = contours.get(i);
double area = contourArea(contour);
if(area > maxArea){
maxAreaId = i;
maxArea = area;
}
}
I want to have a faster way to apply k-mean to a image and display on the screen. I want to have a opencv for android solutions. My code has a 30s run time on smart phone. I want to run it around 1 or 2s.
I already had code for the K-mean and displayed on the screen using opencv. But I need it to be faster. I think the way it label the image and display took to much time.
public void k_Mean(){
Mat rgba = new Mat();
Mat mHSV = new Mat();
Bitmap bitmap = BitmapFactory.decodeResource(getResources(),images[current_image]);
Bitmap outputBitmap = Bitmap.createBitmap(bitmap.getWidth(),bitmap.getHeight(), Bitmap.Config.RGB_565);
Utils.bitmapToMat(bitmap,rgba);
//must convert to 3 channel image
Imgproc.cvtColor(rgba, mHSV, Imgproc.COLOR_RGBA2RGB,3);
Imgproc.cvtColor(rgba, mHSV, Imgproc.COLOR_RGB2HSV,3);
Mat clusters = cluster(mHSV, 3).get(0);
Utils.matToBitmap(clusters,outputBitmap);
imageView.setImageBitmap(outputBitmap);
}
public List<Mat> cluster(Mat cutout, int k) {
Mat samples = cutout.reshape(1, cutout.cols() * cutout.rows());
Mat samples32f = new Mat();
samples.convertTo(samples32f, CvType.CV_32F, 1.0 / 255.0);
Mat labels = new Mat();
//criteria means the maximum loop
TermCriteria criteria = new TermCriteria(TermCriteria.COUNT, 20, 1);
Mat centers = new Mat();
Core.kmeans(samples32f, k, labels, criteria, 1, Core.KMEANS_PP_CENTERS, centers);
return showClusters(cutout, labels, centers);
}
private static List<Mat> showClusters (Mat cutout, Mat labels, Mat centers) {
centers.convertTo(centers, CvType.CV_8UC1, 255.0);
centers.reshape(3);
System.out.println(labels + "labels");
List<Mat> clusters = new ArrayList<Mat>();
for(int i = 0; i < centers.rows(); i++) {
clusters.add(Mat.zeros(cutout.size(), cutout.type()));
}
Map<Integer, Integer> counts = new HashMap<Integer, Integer>();
for(int i = 0; i < centers.rows(); i++) counts.put(i, 0);
int rows = 0;
for(int y = 0; y < cutout.rows(); y++) {
for(int x = 0; x < cutout.cols(); x++) {
int label = (int)labels.get(rows, 0)[0];
int r = (int)centers.get(label, 2)[0];
int g = (int)centers.get(label, 1)[0];
int b = (int)centers.get(label, 0)[0];
counts.put(label, counts.get(label) + 1);
clusters.get(label).put(y, x, b, g, r);
rows++;
}
}
System.out.println(counts);
return clusters;
}
My output is correct. I wander if there is any faster way to do this. My other image processing algorithm run time is less than 1s.
My aim is to detect the largest rectangle in an image, whether its skewed or not. After some research and googling I came up with a code that theoretically should work, however in half of the cases I see puzzling results.
I used OpenCV for Android, here is the Code:
private void find_parallels() {
Utils.bitmapToMat(selectedPicture,img);
Mat temp = new Mat();
Imgproc.resize(img,temp,new Size(640,480));
img = temp.clone();
Mat imgGray = new Mat();
Imgproc.cvtColor(img,imgGray,Imgproc.COLOR_BGR2GRAY);
Imgproc.GaussianBlur(imgGray,imgGray,new Size(5,5),0);
Mat threshedImg = new Mat();
Imgproc.adaptiveThreshold(imgGray,threshedImg,255,Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C,Imgproc.THRESH_BINARY,11,2);
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Mat imageContours = imgGray.clone();
Imgproc.cvtColor(imageContours,imageContours,Imgproc.COLOR_GRAY2BGR);
Imgproc.findContours(threshedImg,contours,hierarchy,Imgproc.RETR_TREE,Imgproc.CHAIN_APPROX_SIMPLE);
max_area = 0;
int num = 0;
for (int i = 0; i < contours.size(); i++) {
area = Imgproc.contourArea(contours.get(i));
if (area > 100) {
MatOfPoint2f mop = new MatOfPoint2f(contours.get(i).toArray());
peri = Imgproc.arcLength(mop, true);
Imgproc.approxPolyDP(mop, approx, 0.02 * peri, true);
if(area > max_area && approx.toArray().length == 4) {
biggest = approx;
num = i;
max_area = area;
}
}
}
selectedPicture = Bitmap.createBitmap(640,480, Bitmap.Config.ARGB_8888) ;
Imgproc.drawContours(img,contours,num,new Scalar(0,0,255));
Utils.matToBitmap(img, selectedPicture);
imageView1.setImageBitmap(selectedPicture);}
In some cases it works excellent as can be seen in this image(See the white line between monitor bezel and screen.. sorry for the color):
Example that works:
However when in this image, and most images where the screen is greyish it gives crazy result.
Example that doesn't work:
Try use morphology, dilate and then erode with same kernel should make it better.
Or use pyrDown + pyrUp, or just blur it.
In short use low-pass filter class of methods, because your object of interest is much larger than noise.
I want to use the imgradient() function of matlab in my android application using opencv. how can i do so and which function of opencv is equivalent to to Matlab imgradient() function.
i m using below mentioned function is it right ?
public Mat imgradient(Mat grayScaleImage)
{
Mat grad_x=new Mat();
Mat grad_y = new Mat();
Mat abs_grad_x=new Mat();
Mat abs_grad_y=new Mat();
Mat gradientImag = new Mat(grayScaleImage.rows(),grayScaleImage.cols(),CvType.CV_8UC1);
Imgproc.Sobel(grayScaleImage, grad_x, CvType.CV_16S, 1, 0,3,1,0,Imgproc.BORDER_DEFAULT );
Core.convertScaleAbs( grad_x, abs_grad_x );
Imgproc.Sobel( grayScaleImage, grad_y, CvType.CV_16S, 0, 1, 3, 1,0,Imgproc.BORDER_DEFAULT );
Core.convertScaleAbs( grad_y, abs_grad_y );
double[] buff_grad = new double[1];
for(int i = 0; i < abs_grad_y.cols(); i++)
{
for(int j =0 ; j<abs_grad_y.rows() ; j++)
{
double[] buff_x = abs_grad_x.get(j, i);
double[] buff_y = abs_grad_y.get(j, i);
double x = buff_x[0];
double y = buff_y[0];
double ans=0;
try
{
ans = Math.sqrt(Math.pow(x,2)+Math.pow(y,2));
}catch(NullPointerException e)
{
ans = 0;
}
buff_grad[0] = ans;
gradientImag.put(j, i, buff_grad);
}
}
return gradientImag;
}
Have you tried using something like sobel or canny operators?
As matlab imgradient() returns the gradient "magnitude" (i.e. sqrt(dx(x,y)² + dy(x,y)²) for each pixel with coordinates x,y), you may want to do something like:
// 1) Get the horizontal gradient
Mat kH = (cv::Mat_<double>(1,3) << -1,0,1); // differential kernel in x
Mat Dx;
filter2D(image, Dx, -1, kH, cv::Point(-1,-1), 0);
// 2) Get the vertical gradient
Mat kV = (cv::Mat_<double>(3,1) << -1,0,1); // differential kernel in y
Mat Dy;
filter2D(image, Dy, -1, kV, cv::Point(-1,-1), 0);
// 3) Get sqrt(dx²+dy²) in each point
for(int i=0; i<Dx.rows; i++)
for(int j=0; j<Dx.cols; j++)
Dmag.at<double>(i,j) = sqrt(pow(Dx.at<double>(i,j),2)+pow(Dy.at<double>(i,j),2));
It should get you what you you want. You can achieve a better performance by accessing gradient data instead of using .at(i,j) for each pixel.
Hope it helps!
I am using OpenCV4Android to process my images. I wanted to preform Illumination Normalization which was linked to me with this work:
http://lear.inrialpes.fr/pubs/2007/TT07/Tan-amfg07a.pdf
furthermore I was given COMPLETE IMPLEMENTATION in C++ (OpenCV):
https://github.com/bytefish/opencv/blob/master/misc/tan_triggs.cpp
I tried to rewrite this code do Java, but I think there might be mistake somewhere. So, what I get from this alghorithm is close but not good enough. Check the expected results on the PDF above on page for example 12. And this is what i get:
https://dl.dropboxusercontent.com/u/108321090/a1.png
https://dl.dropboxusercontent.com/u/108321090/Screenshot_2013-12-31-14-09-25.png
So there is still too much noise between background and face features, but I think it's my fault here. This is my code:
//GET IMAGE URI
Uri selectedImage = imageReturnedIntent.getData();
//CREATE BITMAP FROM IT
BitmapFactory.Options bmpFactoryOptions = new BitmapFactory.Options();
bmpFactoryOptions.inPreferredConfig = Bitmap.Config.ARGB_8888;
Bitmap bmp = BitmapFactory.decodeStream(getContentResolver().openInputStream(selectedImage),
null, bmpFactoryOptions);
//CREATE OPENCV MAT OBJECT
Mat imageMat = new Mat();
Utils.bitmapToMat(bmp, imageMat);
//CONVERT TO GRAYSCALE
Mat grayMat = new Mat();
Imgproc.cvtColor(imageMat, grayMat, Imgproc.COLOR_BGR2GRAY);
//CUT OUT FACE FROM WHOLE IMAGE
(...) face detection cascades localize face and writes the region where face is located
in array, then I create mat with only face in it:
Mat cleanFaceMatGRAY = new Mat();
cleanFaceMatGRAY = new Mat(faceDetectMatGRAY, facesArray[0]);
//PROCESSING OF MAT WITH FACE (alghorithm from PDF & .cpp file)
Mat I = tan_triggs_preprocessing(cleanFaceMatGRAY);
Core.normalize(I, I,0, 255, Core.NORM_MINMAX, CvType.CV_8UC1);
//DISPLAY MAT IN IMAGEVIEW
ivPickedPhoto.setImageBitmap(AppTools.createBitmapFromMat(I, Bitmap.Config.ARGB_8888));
And method with algorithm (as u can see its total copy-paste from .cpp file with edited/rewrited methods to OpenCV4Android):
private Mat tan_triggs_preprocessing(Mat image) {
float alpha = 0.1f;
float tau = 10.0f;
float gamma = 0.2f;
int sigma0 = 1;
int sigma1 = 2;
// Convert to floating point:
Mat X = image;
X.convertTo(X, CvType.CV_32FC1);
// Start preprocessing:
Mat I = new Mat();
Core.pow(X, gamma, I);
// Calculate the DOG Image:
{
Mat gaussian0 = new Mat();
Mat gaussian1 = new Mat();
// Kernel Size:
int kernel_sz0 = (3*sigma0);
int kernel_sz1 = (3*sigma1);
// Make them odd for OpenCV:
kernel_sz0 += ((kernel_sz0 % 2) == 0) ? 1 : 0;
kernel_sz1 += ((kernel_sz1 % 2) == 0) ? 1 : 0;
Size ksize1 = new Size(kernel_sz0,kernel_sz0);
Size ksize2 = new Size(kernel_sz1,kernel_sz1);
Imgproc.GaussianBlur(I, gaussian0, ksize1, sigma0, sigma0, Imgproc.BORDER_CONSTANT);
Imgproc.GaussianBlur(I, gaussian1, ksize2, sigma1, sigma1, Imgproc.BORDER_CONSTANT);
Core.subtract(gaussian0, gaussian1, I);
}
{
double meanI = 0.0;
{
Mat tmp = new Mat();
Mat abstmp = new Mat();
Core.absdiff(I, new Scalar(0), abstmp);
Core.pow(abstmp, alpha, tmp);
meanI = Core.mean(tmp).val[0];
}
Core.divide( Math.pow(meanI, 1.0/alpha), I, I);
}
{
double meanI = 0.0;
{
Mat tmp = new Mat();
Mat abstmp = new Mat();
Mat mintmp = new Mat();
Core.absdiff(I, new Scalar(0), abstmp);
Core.min(abstmp, new Scalar(tau), mintmp);
Core.pow(mintmp, alpha, tmp);
meanI = Core.mean(tmp).val[0];
}
Core.divide( Math.pow(meanI, 1.0/alpha), I, I);
}
// Squash into the tanh:
{
for(int r = 0; r < I.rows(); r++) {
for(int c = 0; c < I.cols(); c++) {
I.get(r,c)[0] = Math.tanh(I.get(r,c)[0]) / tau;
}
}
Core.multiply(I,new Scalar(tau), I);
}
return I;
}
And what I didn't understand while I was rewriting this code was the iteration over the matrix. In .cpp there was
I.at<float>(r,c)
Where I have replaced it with just:
I.get(r,c)[0]
Do you think I might have lost some data here so thats why image is shady?