Reduce the array to 0 in minimum moves with given constraints - java

You are given a city which lies on the x-axis. It has n buildings. The first building lies in x = 1 and has height h1, the second building lies on x = 2 and has height h2 and so on. You are a gigantic monster with a sword who wants to destroy the city. You are also a computer scientist at heart so you efficiency is the key, hence you want to destroy the city using minimum number of moves.
You can make one of the two moves :
1. Make a horizontal cut from x = L to x = R, cutting down the heights of the buildings from x = L to X = R by 1.
2. make a vertical cut at x = P, completely destroying the building at x = P thereby making its height zero.**
Note that : for the 1st type of move, every city in the range from L to R must have at least 1 height remaining, i.e. you cannot strike through an empty space.
Print the minimum number of moves needed to destroy the city.
Input
First line contains the number of test cases.
For each test case, the first line contains the number of buildings n.
Second line contains n integers denoting the heights of the building
Output
For every test case, print the minimum number of moves to destroy the city on a new line.
Notes
1 ≤ n ≤ 1000
0 ≤ hi ≤ 1000
Sample Input 0
2
5
2 2 2 3 3
5
10 2 10 2 10
Sample Output 0
3
5
I cannot figure out the approach to the question.
My code does not work for the following input:
1 1 1 2 4 5 7 7 8 9**
In my code i reduce the min value from all elements. Then find out the subarray between zeros and then compare the length of subarray(j-i) with the minimum value. if the length is less, then then we need to follow move 2, else move 1.
My code:
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.Scanner;
public class Main {
static int findmin(int arr[], int i, int j) {
int min = Integer.MAX_VALUE;
for (int k = i; k < j; k++) {
if (min > arr[k]) {
min = arr[k];
}
}
return min;
}
static void subtractmin(int arr[], int i, int j, int min) {
//if both the length of subarray and min are equal, we destroy separately
if (j - i <= min) {
for (int k = i; k < j; k++) {
// if
arr[k] = 0;
}
} else {
//subtract all
for (int k = i; k < j; k++)
// if
{
arr[k] -= min;
}
}
}
public static void main(String[] args) {
//int input[] = {10, 2, 10, 2, 10};// 5
//int input[] = {2, 2, 2, 3, 3};// 5
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- != 0) {
int zeros = 0;
int n = sc.nextInt();
int input[] = new int[n];
int min = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
input[i] = sc.nextInt();
if (min > input[i]) {
min = input[i];
}
if (input[i] == 0) {
zeros++;
}
}
//subtract minimum element from array
int count = 0;
if (zeros == 0) {
count += min;
subtractmin(input, 0, n, min);
} else {
count += min;
subtractmin(input, 0, n, min);
}
//traverse the array and findsubarrays between 0's
//1) if an element is surrounded by 0's it will be destroyed at once separately
// 2) also if length of subarray<min element, they all need to be destroyed separately
// 3) if min<length of subarray they need to be destroyed at once with count+=min
int i = 0, j = 0;
while (true) {
//move i to the first non zero element
for ( i = 0; i < n; i++) {
if (input[i] != 0) {
break;
}
}
//means whole array is 0;
if (i == n) {
System.out.println(Math.min(count, n - zeros));
break;
}
///start with the first non zero element and fin
for (j = i; j <= n; j++) {
if ( j == n || input[j] == 0) {
// take out min element
int minEle = findmin(input, i, j) ;
//if min lement is greater than subarray size, destroy separately
count += Math.min(minEle, j - i);
//System.out.println("count="+count+"min element="+minEle);
// subtract minimum element
subtractmin(input, i, j, minEle);
}
//if last elemnt is not zero
}
}
}
}
}

A possible hint here is that reducing a building to zero separates sections, which implies divide and conquer.
Let f(A, l, r) represent the optimal number of moves for the section of A indexed at [l, r]. Then:
f(A, l, r):
min(
# Reduce the whole section
# without separating it, using
# move 1, the horizontal cuts.
max(A[l..r]),
# Divide and conquer
1 + f(A, l, k-1) + f(A, k+1, r)
)
for all l ≤ k ≤ r
Except we don't need to try all ks, just one that points to max(A). Not removing max(A) implies we would need to either perform max(A) moves or we would have to remove it later.
JavaScript code:
function findMax(A, l, r){
let idx = l;
for (let i=l; i<=r; i++)
if (A[i] > A[idx])
idx = i;
return idx;
}
function f(A, l=0, r=A.length-1, memo={}){
if (l > r)
return 0;
if (l == r)
return 1;
const key = String([l, r]);
if (memo.hasOwnProperty(key))
return memo[key];
const k = findMax(A, l, r);
const best = Math.min(A[k], 1 + f(A, l, k-1, memo) + f(A, k+1, r, memo));
return memo[key] = best;
}
var As = [
[2, 2, 2, 3, 3],
[10, 2, 10, 2, 10],
[1, 1, 1, 2, 4, 5, 7, 7, 8, 9]
];
for (let A of As)
console.log(f(A));

The probleme you have is not in the code, but in the algorithm. If the size of a segment is small enough, effectivelly you have to perform move 2. However, this condition is not indispensable.
In practice, a simple recursive approach can solve this problem. In a given segment [k, l], after having substracted the min value, you simply have to perform:
n_moves = min (n, vmin + min_moves(x, k, l));
In the following, one function detects positions of the zeros and sum the moves corresponding to each segment
and another function is called for each segment with no zero inside.
The following code is in C++, but it is rather simple and should be easily translated to another language.
Output:
1 2 7 : 3
2 2 2 3 3 : 3
10 2 10 2 10 : 5
1 1 1 2 4 5 7 7 8 9 : 8
This code is provided for completeness. What is important is the algorithm itself.
#include <iostream>
#include <vector>
#include <algorithm>
std::vector<int> get_zeros (const std::vector<int> &x, int k, int l) {
std::vector<int> zeros;
for (int i = k; i <= l; ++i) {
if (x[i] == 0) zeros.push_back(i);
}
return zeros;
}
int min_moves (std::vector<int> &x, int k, int l);
// This function is called after detection the position of the zeros -> no zero inside
int min_moves_no_zero (std::vector<int> &x, int k, int l) {
int n = l-k+1;
if (n == 0) return 0;
if (n == 1) return 1;
int vmin = 10000;
for (int i = k; i <= l; ++i) {
if (x[i] < vmin) vmin = x[i];
}
for (int i = k; i <= l; ++i) {
x[i] -= vmin;
}
int nm = std::min (n, vmin + min_moves(x, k, l));
return nm;
}
// This function detects positions of the zeros and sum the moves corresponding to each segment
int min_moves (std::vector<int> &x, int k, int l) {
auto zeros = get_zeros (x, k, l);
if (zeros.size() == 0) return min_moves_no_zero (x, k, l);
int start = k;
int total = 0;
for (int z = 0; z < zeros.size(); ++z) {
int end = zeros[z] - 1;
if (start != zeros[z]) {
total += min_moves_no_zero (x, start, end);
}
start = end + 2;
}
if (start <= l) {
total += min_moves_no_zero (x, start, l);
}
return total;
}
void print (const std::vector<int> &x) {
for (auto k: x) {
std::cout << k << " ";
}
}
int main() {
std::vector<std::vector<int>> input {
{1, 2, 7},
{2, 2, 2, 3, 3},
{10, 2, 10, 2, 10},
{1, 1, 1, 2, 4, 5, 7, 7, 8, 9}
};
for (auto& arr: input) {
auto save = arr;
int moves = min_moves (arr, 0, arr.size()-1);
print (save);
std::cout << " : " << moves << "\n";
}
}

Related

Count the semiprime numbers in the given range [a..b]

I am solving Codility problem CountSemiprimes: Count the semiprime numbers in the given range [a..b].
Task description
A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.
A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26.
You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges.
Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [1..50,000];
M is an integer within the range [1..30,000];
each element of arrays P, Q is an integer within the range [1..N];
P[i] ≤ Q[i].
My solution
My current score is 66% and problem is preformance for large data set:
large random, length = ~30,000
all max ranges
Test says, that it should take about 2sec, but my solution takes over 7sec.
This is my current solution
class Solution {
private static List<Integer> getPrimes(int max) {
List<Integer> primes = new ArrayList<>(max / 2);
for (int i = 0; i < max; i++)
if (isPrime(i))
primes.add(i);
return primes;
}
private static boolean isPrime(int val) {
if (val <= 1)
return false;
if (val <= 3)
return true;
for (int i = 2, sqrt = (int)Math.sqrt(val); i <= sqrt; i++)
if (val % i == 0)
return false;
return true;
}
private static boolean[] getSemiPrimes(int N) {
List<Integer> primes = getPrimes(N);
boolean[] semiPrimes = new boolean[N + 1];
for (int i = 0; i < primes.size(); i++) {
if (primes.get(i) > N)
break;
for (int j = i; j < primes.size(); j++) {
if (primes.get(j) > N || N / primes.get(i) < primes.get(j))
break;
int semiPrime = primes.get(i) * primes.get(j);
if (semiPrime <= N)
semiPrimes[semiPrime] = true;
}
}
return semiPrimes;
}
public static int[] solution(int N, int[] P, int[] Q) {
boolean[] semiPrimes = getSemiPrimes(N);
int[] res = new int[P.length];
for (int i = 0; i < res.length; i++)
for (int j = P[i]; j <= Q[i]; j++)
if (semiPrimes[j])
res[i]++;
return res;
}
}
Any ideas about improving performance? My last one was to remove Set for holding semi-primes with array. It helped me to solve couple of performance tests.
A Java solution which scores 100% is as follow:
Find the set of prime numbers which their products is not greater than N
create semi-prime from them as a bit wise array of 0 and 1
create a prefix sum of the semi-primes
calculate the queries from P[i] to Q[i] in O(M)
The whole algorithm is of O(N * log(log(N)) + M) stated by the Codility's test result evaluation.
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class CountSemiPrime {
public static void main(String[] args) {
int[] P = new int[] {1, 4, 16};
int[] Q = new int[] {26, 10, 20};
System.out.println( Arrays.toString( new CountSemiPrime().solution( 26, P, Q ) ) );
}
public int[] solution(int N, int[] P, int[] Q) {
Integer[] primes = sieve(N/2+1);
int[] temp = new int[N+1];
for (int i = 0; i < primes.length; i++) {
for (int j = 0; j < primes.length; j++) {
int semiPrime = primes[i] * primes[j];
if(semiPrime <= N)
temp[semiPrime] = 1;
}
}
int[] prefix = new int[N+1];
for (int i = 1; i < temp.length; i++) {
prefix[i] = temp[i] + prefix[i-1];
}
int[] retVal = new int[P.length];
for (int i = 0; i < retVal.length; i++) {
retVal[i] = prefix[Q[i]] - prefix[P[i]-1];
}
return retVal;
}
public Integer[] sieve(int n) {
boolean[] temp = new boolean[n+1];
for (int i = 0; i < temp.length; i++) {
temp[i] = true;
}
temp[0] = temp[1] = false;
int i = 2;
while (i * i <= n) {
removeProducts( temp, i );
i++;
}
List<Integer> ret = new ArrayList<>();
for (int j = 0; j < temp.length; j++) {
if(temp[j])
ret.add( j );
}
return ret.toArray( new Integer[ret.size()] );
}
private void removeProducts(boolean[] temp, int i) {
for (int j = i*i; j < temp.length; j++) {
if(temp[j] && j % i == 0) {
temp[j] = false;
}
}
}
}
You can precompute an array A of size N+1, which stores at A[i] the number of semiprimes less than or equal to i. Then a query p, q can be computed immediately: the number of semiprimes between p and q (inclusive) is A[q] - A[p-1].
This array can be computed efficiently: let P be an array of primes less than or equal to N/2. Then (in java-like pseudocode):
A = new int[N+1]
for (int p : P) {
for (int q : P) {
if (p*q > N || q > p) break;
A[p*q] = 1
}
}
for (int i = 1; i <= N; i++)
A[i] += A[i-1]
This works by marking the semiprimes with a 1 in the array, and then taking a cumulative sum. It runs in better than O(N^2) and worse than O(N) time -- there's about N/2logN primes in P, so the first part is O((N/logN)^2), and the summing-up is O(N). [Note: I guess the first part has better complexity than O((N/log N)^2) because of the early termination of the inner loop, but I've not proved that]. Computing the primes in P is O(N log log N) using the sieve of Erastothenes.
A Python version of this program takes 0.07s to precompute A for N=50000, and to perform 30000 queries. It gets a perfect score (100) when run on codility, and codility reports that it detects the code to be have complexity O(N log(log(N)) + M).
Ruby 100% solution
require 'prime'
require 'set'
def solution(n, p, q)
primes = Prime::EratosthenesGenerator.new.take_while {|i| i <= n/2 }
sqrt = Math.sqrt(n)
semiprimes = primes.each_with_index.inject(Set.new) do |acc, (e,i)|
break acc if e > sqrt.to_i
primes[i..-1].each{ |pr| e*pr > n ? break : acc << e*pr }
acc
end
offsets = semiprimes.sort.each_with_index.inject([]) {|acc,(el,i)| acc[el] = i+1;acc }
p.each_with_index.inject([]) do |acc, (el,i)|
next acc << 0 unless offsets[el..q[i]]
left = offsets[el..q[i]].detect{|a| a}
next acc << 0 unless left
right = offsets[el..q[i]].reverse_each.detect{|a| a}
acc << ((left..right).size)
end
end
My solution uses Sieve of Eratosthenes such that smallest prime factor of number N is stored in the array Factor[N].
Then if Factor[N/Factor[N]] = 0, we have a semi prime number incrementing a sum scan.
The entry r of the returned array will then be:
A[r]=Inclusive_scan[Q[r]]-Inclusive_scan[P[r]-1].
Here the corresponding python code (100% task score):
def solution(N, P, Q):
A=len(P)*[0]
if N<4:
return A
#Minimum prime factor of n stored in Factor[n]
Factor = [0] * (N + 1)
i = 2
while (i * i <= N):
if (Factor[i] == 0):
k = i * i
while (k <= N):
if (Factor[k] == 0):
Factor[k] = i;
k += i
i += 1
#Count semi prime numbers and store
#sum scan in array Incluse_scan
Incluse_scan=[0] * (N + 1)
cnt_semi=0
for k in range(4,N+1):
if Factor[k]!=0:
d=int(k/Factor[k])
if Factor[d]==0:
cnt_semi+=1
Incluse_scan[k]=cnt_semi
#Do the difference of semi prime counters
for r in range(0,len(P)):
if(P[r]<=4):
min_inclusive=0
else:
min_inclusive=P[r]-1
A[r]=Incluse_scan[Q[r]]-Incluse_scan[min_inclusive]
return A
this is my 100% solution in C++. you can find other answers in my github in cpp:
vector<int> getFactArr(int n) {
vector<int> f(n+1, 0);
f[1] = 1;
int i = 2;
while (i * i <= n) {
if (f[i] == 0) {
int k = i * i;
while (k <= n) {
if (f[k] == 0)
f[k] = i;
k+=i;
}
}
i++;
}
return f;
}
vector<int> solution(int N, vector<int> &P, vector<int> &Q) {
vector<int> F = getFactArr(N);
vector<int> prefix_semi_primes(N + 1, 0);
for (int x = 1; x <= N; x++) {
if (F[x] > 0 && F[x / F[x]] == 0)
prefix_semi_primes[x]++;
prefix_semi_primes[x] += prefix_semi_primes[x - 1];
}
const int M = P.size();
vector<int> ans(M, 0);
for (int i = 0; i < M; i++) {
ans[i] = prefix_semi_primes[Q[i]] - prefix_semi_primes[P[i] - 1];
}
return ans;
}
This was an interesting problem. I tried it and got 88% score.
Here is my strategy:
I used Sieve of Eratosthenes for getting a BitSet for primes.
Now I looped over that BitSet and added all the primes in a primeList.
My strategy for finding semi-primes was a bit interesting and I reached to this strategy incrementally.
private static boolean isSemiPrime(int n) {
if(n==1 || n==0 || primeBitSet.get(n))
return false;
int firstFactor = findFirstFactor(n);
if(firstFactor==0 || firstFactor==1)
return false;
return isPrime(n / firstFactor);
}
private static int findFirstFactor(int n) {
for (int i = 0; i < primeList.size(); i++) {
if (n % primeList.get(i) == 0)
return primeList.get(i);
}
// should never be the case
return 0;
}
I'm not very sure why I got 88% score. (What I'm missing)
But the most interesting and worth noting part was the strategy to check whether a given number is Semi-prime or not:
Find the first prime factor of the given number
Then checking that the quotient of the given number and the first-prime-factor is a prime or not.
If it is prime, then the given number is a semi-prime, otherwise the given number is not a semi prime.
Note that I also did a very naive form of book-keeping where I made a cumulative array which stores the total number of semi-primes till index x. One time filling this array and answering each of the query in O(1) is again obvious optimization.
Not related to the solution, but my Task Score was 88%, Correctness 100% and Performance 80%. I'll be happy to hear suggestions and anything that I missed.
Hope this helps. :)
const isSemiPrime = (num) => {
let cnt = 0
for (let i = 2; cnt < 2 && i * i <= num; ++i) {
while (num % i == 0) {
num /= i
++cnt
}
}
if (num > 1)++cnt
return cnt == 2 ? true : false
}
console.log(
[4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55].filter(isSemiPrime)
.length
)
Here the Javascript version of the solution, but it is 55%:
function solution(N, P, Q) {
function isPrime(num) {
for(var i = 2; i < num; i++)
if(num % i === 0) return false;
return num > 1;
}
const min = Math.min(...P)
const max = Math.max(...Q)
const A = []
for(let i=min;i<max;i++) {
for(let j=min;j<max;j++) {
if (isPrime(i) && isPrime(j)) {
const prod = j * i
if (prod > max) break
if (A.includes(prod)) continue
A.push(j * i)
}
}
}
const result = []
for(let i=0;i<P.length;i++) {
for(let j=P[i];j<=Q[i];j++) {
result[i] = result[i] || 0
if (A.includes(j)) {
result[i]++
}
}
}
return result
}
I would like to mention that the method you use for finding primes is inefficient.
Your code:
private static List<Integer> getPrimes(int max) {
List<Integer> primes = new ArrayList<>(max / 2);
** for (int i = 0; i < max; i++)
** if (isPrime(i))
** primes.add(i);
return primes;
}
private static boolean isPrime(int val) {
if (val <= 1)
return false;
if (val <= 3)
return true;
** for (int i = 2, sqrt = (int)Math.sqrt(val); i <= sqrt; i++)
** if (val % i == 0)
** return false;
return true;
}
I have marked the lines to pay attention to.
I would do something like this:
private static List<Integer> getPrimes(int max) {
List<Integer> primes = new ArrayList<>(max / 2);
primes.add(2);
for (int i = 3; i < max; i++)
if (isPrime(i, primes))
primes.add(i);
return primes;
}
private static boolean isPrime(int val, List<Integer> primes) {
int sqrtv = Math.sqrt(val);
for (int i = 0; i < primes.length(); i++)
{
int prime = primes.get(i);
if (val % primes.get(i) == 0)
{
return false;
} else if (prime > sqrtv) {
return true;
}
}
return true;
}
This plays on the fact that:
the only call to isPrime is from getPrimes. getPrimes will always call val in ascending order.
by the time isPrime is called with the parameter val, getPrimes has already got a list of all primes that are smaller than val.
there's no point in dividing with non-primes when determining primes. If we already know that a number 'a' is not divisible by 2, then why bother with dividing it by 4, 6, 8 or 10? If we know it isn't divisible by 3, then it won't be divisible by 9... so all of the non-prime checks are filtered by using the previously calculated primes only to perform the checking.
Here is my 100% in c++. I'm using prefixSum. Time complexity O(N * log(log(N)) + M).
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
vector<int> solution(int N, vector<int> &P, vector<int> &Q)
{
vector<bool> sieve(N, true);
vector<int> ret;
sieve[0] = sieve[1] = false;
int i = 2;
while (i * i <= N)
{
if (sieve[i])
{
int k = i * i;
while (k <= N)
{
sieve[k] = false;
k += i;
}
}
i++;
}
vector<int> prefixSum(N + 1, 0);
for (int i = 2; i <= sqrt(N); i++)
if (sieve[i])
for (int j = i; j <= N; j++)
{
if (j * i > N)
break;
if (sieve[j])
prefixSum[j * i]++;
}
int carry;
for (unsigned int i = 5; i < prefixSum.size(); i++)
{
carry = prefixSum[i - 1];
prefixSum[i] += carry;
}
for (unsigned int i = 0; i < P.size(); i++)
ret.push_back(prefixSum[Q[i]] - prefixSum[P[i] - 1]);
return ret;
}
A 100% solution broken down. https://app.codility.com/demo/results/trainingGVNHKU-MA5/
Firstly use the sieve of Eratosthenes to workout what is prime.
def get_sieve(n):
# Use the sieve or Eratosthenes to produce an array of primes
# where factor[n] == 0 indicates a prime number
factors = [0] * (n+1)
i=2
i2 = i*i
while (i2 <= n):
if not factors[i]:
k = i2
while k <= n:
if not factors[k]:
factors[k] = i
k += i
i += 1
i2 = i*i
return factors
Next, determine if the number is semi prime. If both its factors are prime its semiprime.
def is_semi_prime(n, factors):
if factors[n]: # Check its not a prime
for r in range(int(n**.5)+1, 1, -1):
if not n%r:
d = n//r
return (not factors[d]) and (not factors[r])
return False
Then scan the range up to N numbers to count slope of increasing semi primes. simply measure the slope within a slice to see how many semi primes occur during that slice.
def solution(N, P, Q):
# produce a slope of increasing semi primes
factors = get_sieve(N)
slope = [0] * (N+1)
for i in range(1, N+1):
slope[i] = slope[i-1] + is_semi_prime(i, factors) # Auto casting!! :-)
# Optimus Prime!
# print(list(enumerate(slope)))
return [slope[Q[j]] - slope[P[j]-1] for j in range(len(P))]
https://github.com/niall-oc/things/blob/master/codility/count_semiprimes.py
and more at
https://github.com/niall-oc/things/blob/master/codility/
I took a slightly different approach. The other efficient solutions in this thread builds a regular Sieve of Eratosthenes (F) with a twist of recording the smallest prime factor in the slot, so semiprimes are those x for which F[x] > 0 and F[x // F[x]] == 0, i.e. dividing by the smallest prime factor yields another prime number.
My approach is a little slower but does not use division, and builds an interesting intermediate: a sieve that computes exactly how many factors make up the prime factorization of the number (and zeros at the primes). For each prime p, I would increment the sieve at position 2p, 3p, 4p,... but also count a factor for p^2, 2p^2, 3p^2..., p^3, 2p^3, 3p^3, 4p^3,... and so forth. The slot for 16 stores the value 4 (prime factorization: 2*2*2*2), because the slot gets hit by visits from 2, 2^2, 2^3 and 2^4.
Then the semiprimes are those positions having exactly 2 prime factors.
After that I build a prefix count of semiprimes with which to answer the queries in constant time.
def solution(N, P, Q):
num_factors = [0] * (N+1)
for i in range(2, N+1):
if num_factors[i] == 0:
# Count visits to multiples of i by adding i each time
add_visit = i+i
while add_visit < N+1:
num_factors[add_visit] += 1
add_visit += i
# But squares of prime count as 2 factors, cubes count as 3 etc,
# so also run visits for multiples of the squares, cubes, etc.
power_prime = i*i
while power_prime < N+1:
visit = power_prime
while visit < N+1:
num_factors[visit] += 1
visit += power_prime
power_prime *= i
semiprime_prefix_count = [0] * (N+1)
for i in range(1, N+1):
semiprime_prefix_count[i] = semiprime_prefix_count[i-1]
if num_factors[i] == 2:
semiprime_prefix_count[i] += 1
results = []
for p, q in zip(P, Q):
results.append(semiprime_prefix_count[q] - semiprime_prefix_count[p-1])
#print(list(zip(range(N+1),num_factors)))
#print(list(zip(range(N+1),semiprime_prefix_count)))
return results
Use the usual sieve to get the prime numbers up to N.
Use the prime number to get semi-prime numbers up to N. You can do this by checking any number for two prime factors.
Create prefix sums to store the number of semi-primes up to a particular index.
Finally, get the semi prime counts by subtracting the numbers at the query end and start.
vector<int> solution(int N, vector<int> &P, vector<int> &Q)
{
vector<int> sieve(N, 0);
for (int prime = 2; prime * prime <= N; ++prime) {
for (int composite = prime * prime; composite <= N; composite += prime) {
if (!sieve[composite - 1]) sieve[composite - 1] = prime;
}
}
vector<int> semi_primes;
for (int i = 3; i < N; ++i) {
const int e = sieve[i];
if (e > 0 && !sieve[i / e]) semi_primes.push_back(i + 1);
}
if (semi_primes.empty()) semi_primes.push_back(0);
vector<int> prefix_sums(N + 1, 0);
for (int i = 1, spi = 0; i <= N; ++i) {
prefix_sums[i] = ((semi_primes[spi] != i) ? spi : ++spi);
}
int M = P.size();
vector<int> semi_prime_counts(M, 0);
for (int i = 0; i < M; ++i) {
semi_prime_counts[i] = prefix_sums[Q[i]] - prefix_sums[P[i] - 1];
}
return semi_prime_counts;
}
function solution(N, P, Q) {
// write your code in JavaScript (Node.js 8.9.4)
let pr =[];let fn =[]
for(var i=2;i<=N;i++){
if(isPrime(i)){
pr.push(i)
}
}
let spr = [],mul,br=0
for(var i=0;i<pr.length;i++){
for(var j=0; j <pr.length;j++){
mul = pr[i] * pr[j];
if(mul <= N) {
spr.push(mul)
}else{
br =1;
break;
}
}
// if(br==1) break;
}
let nm = [];
//let o =0
for(var i=0;i<=N;i++){
if(spr.indexOf(i) >=0){
// ++o
nm.push(1)
}else{
nm.push(0)
}
}
// spr = Array.from(new Set(spr))
// spr.sort((a,b)=> a- b)
let a,b,c
for(var i =0;i<P.length;i++){
// a= findme(P[i],spr)
// b= findme(Q[i],spr)
// a= nm[P[i]]
// b= nm[Q[i]]
c= nm.slice(P[i],Q[i]+1).reduce((a,b)=> a+b)
// c=c <=0 ? 0 : c+1
// fn.push(b - a + 1)
fn.push(c)
}
return fn
}
function findme(a,arr){
for(var i= 0; i< arr.length;i++){
if(a <= arr[i]) return i;
}
}
function isPrime(num){
if (num ===2) return true
for(var i = 2; i < num; i++)
if(num % i === 0) return false;
return num > 1;
}
/**
* https://app.codility.com/demo/results/trainingPBRVXK-28Q/
* time complexity: O(N * log(log N) + M
* space complexity: O(2N + N)
*/
public class CountSemiPrime {
/**
* 2D array for sieving numbers 1..N
* 1 - prime, 2 - semiprime, 3 - composite
*/
public int[][] sieve(int N) {
int[][] sieve = new int[N+1][1];
for (int i=1; i<=N; i++) {
sieve[i][0] = 1; // make prime default
}
for (int i=2; i<= N; i++) {
if (sieve[i][0] == 1) { // if this num is prime, tag its multiples as semi-prime
int next_number = i + i;
while (next_number <= N) {
sieve[next_number][0] = 2;
next_number += i;
}
}
// if this num is semi-prime, tag its multiples as composite
else if (sieve[i][0] == 2) {
int next_number = i + i;
while (next_number <= N) {
sieve[next_number][0] = 3;
next_number += i;
}
}
}
return sieve;
}
public int[] solution(int N, int[] P, int[] Q) {
// first, we need to establish prime and semi-prime numbers from 1 to N, in a sieve
int[][] sieve = sieve(N);
int[] prefix_sum_of_sieve = new int[sieve.length];
for (int i=1; i<sieve.length; i++) {
if (sieve[i][0]==2) {
prefix_sum_of_sieve[i] = prefix_sum_of_sieve[i-1] + 1;
}
else {
prefix_sum_of_sieve[i] = prefix_sum_of_sieve[i-1];
}
}
int[] results = new int[P.length];
// we count the semiprime of N from P and Q, for each P & Q from the prefix sum
for (int i=0; i < P.length; i++) {
results[i] = prefix_sum_of_sieve[Q[i]] - prefix_sum_of_sieve[P[i]-1];
}
return results;
}
}
Hope the explanation / comments are easy to understand.

Dynamic programming : perfect sum with negative numbers

Given an array of integers and a sum, the task is to print all subsets of given array with sum equal to given sum.
Example:
Input : arr[] = {1, 2, 3, 4, 5}
sum = 10
Output : [4 3 2 1]
[5 3 2]
[5 4 1]
Input : arr[] = {-1, 2, 3, 4, 5}
sum = 10
Output : [5 3 2]
[5 4 2 -1]
I have done that using dynamic programming in pseudo polynomial time. This is an extension of subset sum problem, which only takes care of deciding whether such a subset exist or not. My solution below works for both positive and negative numbers for the subset sum problem. However, it is not able to print the subsets correctly if the array contains negative numbers.The program is-
import java.util.ArrayList;
// sum problem
class GFG {
static boolean subset[][];
// Returns true if there is a subset of
// set[] with sun equal to given sum
static boolean isSubsetSum(int set[],
int n, int sum) {
// The value of subset[i][j] will be
// true if there is a subset of
// set[0..j-1] with sum equal to i
subset = new boolean[n + 1][sum + 1];
// Fill the subset table in botton
// up manner
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= sum; j++) {
if (j == 0) {
subset[i][j] = true;
} else if (i <= 0 && sum >= 1)
subset[i][j] = false;
else if (set[i - 1] > j)
subset[i][j] = subset[i - 1][j];
else {
if (set[i - 1] >= 0)
subset[i][j] = subset[i - 1][j] || subset[i - 1][j - set[i - 1]];
else
subset[i][j] = subset[i - 1][j] || subset[i - 1][j + set[i - 1]];
}
}
}
// uncomment this code to print table
// for (int i = 0; i <= sum; i++)
// {
// for (int j = 0; j <= n; j++)
// System.out.println (subset[i][j]);
// }
return subset[n][sum];
}
/* Driver program to test above function */
public static void main(String args[]) {
int set[] = {1, 2, 3, 4, 5};
int sum = 10;
int n = set.length;
if (isSubsetSum(set, n, sum) == true)
System.out.println("Found a subset"
+ " with given sum");
else
System.out.println("No subset with"
+ " given sum");
System.out.println("Done");
ArrayList<Integer> list = new ArrayList<>();
printSubsets(set, n, sum, list);
System.out.println("Finished");
}
static void display(ArrayList<Integer> v) {
System.out.println(v);
}
private static void printSubsets(int[] set, int i, int sum, ArrayList<Integer> list) {
if (i == 0 && sum != 0 && subset[0][sum]) {
list.add(set[i]);
display(list);
list.clear();
return;
}
// If sum becomes 0
if (i == 0 && sum == 0) {
display(list);
list.clear();
return;
}
// If given sum can be achieved after ignoring
// current element.
if (subset[i - 1][sum]) {
// Create a new vector to store path
ArrayList<Integer> b = new ArrayList<>();
b.addAll(list);
printSubsets(set, i - 1, sum, b);
}
// If given sum can be achieved after considering
// current element.
if (sum >= set[i - 1] && subset[i - 1][sum - set[i - 1]]) {
list.add(set[i - 1]);
printSubsets(set, i - 1, sum - set[i - 1], list);
}
}
}
How this code can be modified to work for negative numbers as well?
Your solutions assumes that all values are positive, so the dynamic programing array subset is filled with the values of j that are positive, but you need to take into account negative sums now.
What you need to do is to change the loop limits of j to fill the dynamic programing array to
for (int j = negative_sum; j <= positive_sum; j++)
Where negative_sum is the sum of all the negative values and positive_sum is the sum of all the positive ones.
For more details read the wikipedia page for the Subset Sum Problem here where this step is explained.
Since you have to print ( or generate ) all possible subset of given set (containing both positive and negative integers) which have summation equal to sum, what you can do is :
try to represent each position of set as binary representation of 0 and 1, where 1 indicates that element at that position is taken and 0 indicates that element at that position is not taken into account.
Find the summation of all positions where there is 1. If the summation of these values is exactly equals to the given sum, then print that subset.
So, overall time complexity is O(2 ^ n), where n is length of given set.
You may look at following implementation.
import java.util.Arrays;
public class PerfectSum {
public static void printSubsets(int[] set, int n, int sum) {
int totalSubSets = (1 << n);
for (int i = 1; i < totalSubSets; ++i) { // loop over all possible subsets
int curSum = 0;
for (int j = n - 1; j >= 0; --j) {
if (((i >> j) & 1) > 0) { // if bit at jth position is 1 take that value
curSum +=set[j];
}
}
if (curSum == sum) { // valid subset found, then print it
for (int j = n - 1; j >= 0; --j) { // looping in reverse order to print set in decreasing order
if (((i >> j) & 1) > 0) { // if bit at jth position is 1 take that value
System.out.print(set[j] + " ");
}
}
System.out.println("");
}
}
}
public static void main(String[] args) {
int set[] = {-1, 2, 3, 4, 5};
Arrays.sort(set); // To print in non increasing order
int sum = 10;
int n = set.length;
printSubsets(set, n, sum);
}
}
You can subtract the minimum negative number of the array to the entire set, making the numbers in the array positive. Then apply dynamic programming.

Subset sum for double data-type?

I have the following code for subset sum which is suitable for integers. How to extend this code to double data type input? for example, how to extend this same code when the input is 1.01,2.65,3.08,4.07,5.12 (say) and output is 15.62 (say).These inputs and out are example even if they vary the code should work.
// A Java program to count all subsets with given sum.
import java.util.ArrayList;
public class subset_sum
{
// dp[i][j] is going to store true if sum j is
// possible with array elements from 0 to i.
static boolean[][] dp;
static void display(ArrayList<Integer> v)
{
System.out.println(v);
}
// A recursive function to print all subsets with the
// help of dp[][]. Vector p[] stores current subset.
static void printSubsetsRec(int arr[], int i, int sum,
ArrayList<Integer> p)
{
// If we reached end and sum is non-zero. We print
// p[] only if arr[0] is equal to sun OR dp[0][sum]
// is true.
if (i == 0 && sum != 0 && dp[0][sum])
{
p.add(arr[i]);
display(p);
p.clear();
return;
}
// If sum becomes 0
if (i == 0 && sum == 0)
{
display(p);
p.clear();
return;
}
// If given sum can be achieved after ignoring
// current element.
if (dp[i-1][sum])
{
// Create a new vector to store path
ArrayList<Integer> b = new ArrayList<>();
b.addAll(p);
printSubsetsRec(arr, i-1, sum, b);
}
// If given sum can be achieved after considering
// current element.
if (sum >= arr[i] && dp[i-1][sum-arr[i]])
{
p.add(arr[i]);
printSubsetsRec(arr, i-1, sum-arr[i], p);
}
}
// Prints all subsets of arr[0..n-1] with sum 0.
static void printAllSubsets(int arr[], int n, int sum)
{
if (n == 0 || sum < 0)
return;
// Sum 0 can always be achieved with 0 elements
dp = new boolean[n][sum + 1];
for (int i=0; i<n; ++i)
{
dp[i][0] = true;
}
// Sum arr[0] can be achieved with single element
if (arr[0] <= sum)
dp[0][arr[0]] = true;
// Fill rest of the entries in dp[][]
for (int i = 1; i < n; ++i)
for (int j = 0; j < sum + 1; ++j)
dp[i][j] = (arr[i] <= j) ? (dp[i-1][j] ||
dp[i-1][j-arr[i]])
: dp[i - 1][j];
if (dp[n-1][sum] == false)
{
System.out.println("There are no subsets with" +
" sum "+ sum);
return;
}
// Now recursively traverse dp[][] to find all
// paths from dp[n-1][sum]
ArrayList<Integer> p = new ArrayList<>();
printSubsetsRec(arr, n-1, sum, p);
}
//Driver Program to test above functions
public static void main(String args[])
{
int arr[] = {1, 2, 3, 4, 5};
int n = arr.length;
int sum = 10;
printAllSubsets(arr, n, sum);
}
}
Output:[4, 3, 2, 1] [5, 3, 2] [5, 4, 1]
I found answer to this question by simply converting double to integer by calculating decimal places and multiply it by 100(say) as the algorithm uses addition this change does not affect final values in that case I divided the final value by 100 to get the result and displayed it in double data type

Count total subsequences whose sum is divisible by k

I am trying to write a DP solution for the problem: count total number of sub-sequences possible of an array whose elements' sum is divisible by k.
I have written the following solution. But it is not giving the correct result. Like in the following code snippet, the array is {1, 2, 1} and k = 3. So expected total number of sub sequences divisible by 3 is 2, but the actual result is 3 which is clearly incorrect.
Please point out my mistake.
private int countDP(int[] a, int k)
{
int L = a.length;
int[][] DP = new int[L][k];
for(int i = 0; i < DP.length; i++)
{
for(int j = 0; j < DP[0].length; j++)
DP[i][j] = -1;
}
int res = _countDP(a, k, DP, 0, 0);
return res;
}
private int _countDP(int[] a, int k, int[][] DP, int idx, int m) //Not giving the correct result.
{
if(idx == a.length)
return m == 0 ? 1 : 0;
if(DP[idx][m] != -1)
return DP[idx][m];
int ans = 0;
ans = _countDP(a, k, DP, idx + 1, m);
ans += _countDP(a, k, DP, idx + 1, (m + a[idx]) % k);
return DP[idx][m] = ans;
}
public static void main(String[] args)
{
CountSubnsequences cs = new CountSubnsequences();
int[] a = {1, 2, 1};
int k = 3;
int total1 = cs.countDP(a, k);
System.out.println("Total numeber of sub sequences: " + total1);
}
Let s denote a sequence of length N, and K be a given divisor.
dp[i][j] = the number of subsequences of s[0..i] with remainder equal to j. We will compute dp for all 0 <= i < N and 0 <= j < K.
dp[i][j] = 0 for all (i, j)
dp[0][0] += 1
dp[0][s[0] mod K] += 1
for i = 1 .. N - 1
for j = 0 .. K - 1
dp[i][j] = dp[i - 1][j]
for j = 0 .. K - 1
dp[i][(j + s[i]) mod K] += dp[i - 1][j]
The result is dp[N - 1][0]
Python code of #piotrekg2 solution.
Looks good!
from typing import List
# dp[i][j] = the number of subsequences of length i with remainder equal to j.
def count_subseq(s: List[int],k):
n = len(s)
dp = [0]*k
dp[0] = 1 # i=0, remainder=0, only 1 subseq
for i in range(1,n+1):
dp2 = dp.copy() # copy previous i-length results: results without s[i] in subseq
for j in range(k):
dp2[(j+s[i-1])%k] += dp[j]
dp = dp2
return dp[0]
if __name__ == '__main__':
print(count_subseq([2,3,5,8],5))
print(count_subseq([5,5,5],5))
Faced the same issue. But ended up getting an answer.
The answer returning will be always 1 more than the total possible subsequences. This is because we know that 0 is always being a valid answer. So, if let's say you do not pick any single element from the array, then also the sum=0. So, it considers it as a valid answer and increments our answer by 1. So, to get the actual answer Just decrement the returned value by 1.
int fun(int i,int s)
{
if(i==1){
if(s-a[i]!=0 && (s-a[i])%k==0)
return 1;
else
return 0;}
else{
if((s-a[i])%k==0){
return 1+fun(i-1,s-a[i])+fun(i-1,s);
}
else{
return fun(i-1,s-a[i])+fun(i-1,s);
}
}
}

Max double slice sum

Recently, I tried to solve the Max Double Slice Sum problem in codility which is a variant of max slice problem. My Solution was to look for a slice that has maximum value when its minimum value is taken out. So I implemented max slice, but on the current slice took out the minimum number.
My score was 61 of 100 as it failed during some of the tests, mainly the tests on array including both negative and position numbers.
Could you help me to figure out why the code failed or if there is a better solution for the problem?
The problem is as follows:
A non-empty zero-indexed array A consisting of N integers is given.
A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.
The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1]+ A[Y + 1] + A[Y + 2] + ... + A[Z − 1].
For example, array A such that:
A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2
contains the following example double slices:
double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16,
double slice (3, 4, 5), sum is 0.
The goal is to find the maximal sum of any double slice.
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty zero-indexed array A consisting of N integers, returns the maximal sum of any double slice.
For example, given:
A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2
the function should return 17, because no double slice of array A has a sum of greater than 17.
Assume that:
N is an integer within the range [3..100,000];
each element of array A is an integer within the range [−10,000..10,000].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
Copyright 2009–2013 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.
And my code is as follows:
public class Solution {
public int solution(int[] A) {
int currentSliceTotal=0;
Integer currentMin=null, SliceTotalBeforeMin =0;
int maxSliceTotal= Integer.MIN_VALUE;
for(int i= 1; i<A.length-1; i++){
if( currentMin==null || A[i] < currentMin ){
if(currentMin!=null ){
if(SliceTotalBeforeMin+currentMin <0){
currentSliceTotal-=SliceTotalBeforeMin;
} else {
currentSliceTotal += currentMin;
}
}
currentMin = A[i];
SliceTotalBeforeMin =currentSliceTotal;
if( SliceTotalBeforeMin<0){
SliceTotalBeforeMin = 0;
currentMin = null;
currentSliceTotal = 0;
}
} else {
currentSliceTotal+= A[i];
}
maxSliceTotal = Math.max(maxSliceTotal, currentSliceTotal);
}
return maxSliceTotal;
}
}
If I have understood the problem correctly, you want to calculate the maximum sum subarray with one element missing.
Your algorithm shall not work for the following case:
1 1 0 10 -100 10 0
In the above case, your algorithm shall identify 1, 1, 0, 10 as the maximum sum sub array and leave out 0 to give 12 as the output. However, you can have 1, 1, 0, 10, -100, 10 as the answer after leaving out -100.
You can use a modified form of Kadane's algorithm that calculates the MAX Sum subarray ending at each index.
For each index, calculate the max_sum_ending_at[i] value by using Kadane's algorithm in forward direction.
For each index, calculate the max_sum_starting_from[i] value by using Kadane's algorithm in reverse direction.
Iterate these arrays simultaneously and choose the 'Y' that has the maximum value of
max_sum_ending_at[Y-1] + max_sum_starting_from[Y+1]
Hello this implementacion has 100 score
int i,n ;
n = A.size();
if (3==n) return 0;
vector<int> max_sum_end(n,0);
vector<int> max_sum_start(n,0);
for (i=1; i< (n-1); i++) // i=0 and i=n-1 are not used because x=0,z=n-1
{
max_sum_end[i] = max ( 0 , max_sum_end[i-1] + A[i] );
}
for (i=n-2; i > 0; i--) // i=0 and i=n-1 are not used because x=0,z=n-1
{
max_sum_start[i] = max ( 0 , max_sum_start[i+1] + A[i] );
}
int maxvalue,temp;
maxvalue = 0;
for (i=1; i< (n-1); i++)
{
temp = max_sum_end[i-1] + max_sum_start[i+1];
if ( temp > maxvalue) maxvalue=temp;
}
return maxvalue ;
This is a Java 100/100 Solution:
https://codility.com/demo/results/demoVUMMR9-JH3/
class Solution {
public int solution(int[] A) {
int[] maxStartingHere = new int[A.length];
int[] maxEndingHere = new int[A.length];
int maxSum = 0, len = A.length;
for(int i = len - 2; i > 0; --i ) {
maxSum = Math.max(0, A[i] + maxSum);
maxStartingHere[i] = maxSum;
}
maxSum = 0;
for(int i = 1; i < len - 1; ++i ) {
maxSum = Math.max(0, A[i] + maxSum);
maxEndingHere[i] = maxSum;
}
int maxDoubleSlice = 0;
for(int i = 0; i < len - 2; ++i) {
maxDoubleSlice = Math.max(maxDoubleSlice, maxEndingHere[i] + maxStartingHere[i+2]);
}
return maxDoubleSlice;
}
}
You can find more information going to this Wikipedia link and in the Programming Pearls book.
Here is my solution
https://github.com/dinkar1708/coding_interview/blob/master/codility/max_slice_problem_max_double_slice_sum.py
Codility 100% in Python
def solution(A):
"""
Idea is use two temporary array and store sum using Kadane’s algorithm
ending_here_sum[i] - the maximum sum contiguous sub sequence ending at index i
starting_here_sum[i] - the maximum sum contiguous sub sequence starting with index i
Double slice sum should be the maximum sum of ending_here_sum[i-1]+starting_here_sum[i+1]
Reference -
https://rafal.io/posts/codility-max-double-slice-sum.html
The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y - 1] + A[Y + 1] + A[Y + 2] + ... + A[Z - 1].
A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2
contains the following example double slices:
double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 - 1 = 16,
double slice (3, 4, 5), sum is 0.
"""
ar_len = len(A)
ending_here_sum = [0] * ar_len
starting_here_sum = [0] * ar_len
# the maximum sum contiguous sub sequence ending at index i
for index in range(1, ar_len - 2): # A[X + 1] + A[X + 2] + ... + A[Y - 1]
ending_here_sum[index] = max(ending_here_sum[index - 1] + A[index], 0)
# the maximum sum contiguous sub sequence starting with index i
for index in range(ar_len - 2, 1, -1): # A[Y + 1] + A[Y + 2] + ... + A[Z - 1]
starting_here_sum[index] = max(starting_here_sum[index + 1] + A[index], 0)
# Double slice sum should be the maximum sum of ending_here_sum[i-1]+starting_here_sum[i+1]
max_slice_sum = ending_here_sum[0] + starting_here_sum[2]
for index in range(1, ar_len - 1):
max_slice_sum = max(max_slice_sum, ending_here_sum[index - 1] + starting_here_sum[index + 1])
return max_slice_sum
C# solution 100/100
public int solution(int[] A) {
int[] forw = new int[A.Length];
int[] rewi = new int[A.Length];
bool isAllNeg = true;
for (int i = 1; i < A.Length; i++)
{
forw[i] = Math.Max(0, forw[i - 1] + A[i]);
if (A[i] > 0 && isAllNeg) isAllNeg = false;
}
if (isAllNeg)
return 0;
for (int i = A.Length - 2; i >= 0; i--)
{
rewi[i] = Math.Max(0, rewi[i + 1] + A[i]);
}
int maxsum = 0;
for (int i = 1; i < A.Length - 1; i++)
{
maxsum = Math.Max(maxsum, forw[i - 1] + rewi[i + 1]);
}
return maxsum;
}
Without using extra memory, 100/100 C++:
#include <algorithm>
int solution(vector<int> &A) {
int max_slice = 0;
int max_slice_i = 0;
int min_val = 0;
int mss = 0;
int mse = 0;
int s = 1;
int msmv = 0;
int max_slice_i_orig = 0;
int os = 1;
for(size_t i = 1;i < A.size() - 1;i++)
{
int v = max_slice_i;
if(max_slice_i > 0 && A[i] < 0)
{
if(A[i] < min_val)
{
v = max_slice_i_orig;
s = os;
min_val = std::max(A[i], -max_slice_i_orig);
} else
{
v = max_slice_i + A[i];
}
} else
{
v = max_slice_i + A[i];
}
int new_orig_v = max_slice_i_orig + A[i];
if(new_orig_v < 0)
{
max_slice_i_orig = 0;
os = i + 1;
} else
{
max_slice_i_orig = new_orig_v;
}
if(v > 0)
{
max_slice_i = v;
} else {
max_slice_i = 0;
min_val = 0;
s = i + 1;
}
if(max_slice_i > max_slice)
{
mss = s;
mse = i;
msmv = min_val;
max_slice = max_slice_i;
}
}
// if all are positive
if(msmv == 0)
{
if(mss == 1 && mse == A.size() - 2)
{
int min = 10001;
for(int j = mss;j <= mse;j++)
{
if(A[j] < min)
min = A[j];
}
max_slice -= min;
}
}
return max_slice;
}
Javascript implementation based on Abhishek Bansal's solution.100/100 on Codility.
function solution(A) {
let maxsum=0;
let max_end_at=Array(A.length);
let max_start_at=Array(A.length);
max_end_at[0]=max_start_at[A.length-1]=max_end_at[A.length-1]=max_start_at[0]=0;
let {max}=Math;
for(let i=1;i<A.length-1;i++){
max_end_at[i]=max(0,max_end_at[i-1]+A[i]);
}
for(let n=A.length-2;n>0;n--){
max_start_at[n]=max(0,max_start_at[n+1]+A[n]);
}
for(let m=1;m<A.length-1;m++){
maxsum=max(maxsum,max_end_at[m-1]+max_start_at[m+1]);
}
return maxsum;
}
The most clear Python solution among others:
def solution(A):
mid = 1
total = 0
max_slice = 0
for idx, end in enumerate(A[2:-1], start=2):
if total < 0:
mid = idx
total = 0
elif total == 0 and A[idx - 1] > A[mid]:
mid = idx - 1
total = end
else:
if A[mid] > end:
total += A[mid]
mid = idx
else:
total += end
max_slice = max(max_slice, total)
return max_slice
Using the idea from http://en.wikipedia.org/wiki/Maximum_subarray_problem
and Abhishek Bansal's answer above. 100% test pass:
public class Solution {
public int solution(int[] A) {
int[] maxEndingHere = maxEndingHere(A);
int[] maxStartingHere = maxStartingHere(A);
int maxSlice = 0;
for (int i = 1; i < A.length-1;i++) {
maxSlice = Math.max(maxSlice, maxEndingHere[i-1]+maxStartingHere[i+1]);
}
return maxSlice;
}
/**
* Precalculate ending subarrays. Take into account that first and last element are always 0
* #param input
* #return
*/
public static int[] maxEndingHere(int[] input) {
int[] result = new int[input.length];
result[0] = result[input.length-1] = 0;
for (int i = 1; i < input.length-1; i++) {
result[i] = Math.max(0, result[i-1] + input[i]);
}
return result;
}
/**
* Precalculate starting subarrays. Take into account that first and last element are always 0
* #param input
* #return
*/
public static int[] maxStartingHere(int[] input) {
int[] result = new int[input.length];
result[0] = result[input.length-1] = 0;
for (int i = input.length-2; i >= 1; i--) {
result[i] = Math.max(0, result[i+1] + input[i]);
}
return result;
}
}
Vb.net version of the above solution is as below:
Private Function solution(A As Integer()) As Integer
' write your code in VB.NET 4.0
Dim Slice1() As Integer = Ending(A)
Dim slice2() As Integer = Starting(A)
Dim maxSUM As Integer = 0
For i As Integer = 1 To A.Length - 2
maxSUM = Math.Max(maxSUM, Slice1(i - 1) + slice2(i + 1))
Next
Return maxSUM
End Function
Public Shared Function Ending(input() As Integer) As Integer()
Dim result As Integer() = New Integer(input.Length - 1) {}
result(0) = InlineAssignHelper(result(input.Length - 1), 0)
For i As Integer = 1 To input.Length - 2
result(i) = Math.Max(0, result(i - 1) + input(i))
Next
Return result
End Function
Public Shared Function Starting(input() As Integer) As Integer()
Dim result As Integer() = New Integer(input.Length - 1) {}
result(0) = InlineAssignHelper(result(input.Length - 1), 0)
For i As Integer = input.Length - 2 To 1 Step -1
result(i) = Math.Max(0, result(i + 1) + input(i))
Next
Return result
End Function
Private Shared Function InlineAssignHelper(Of T)(ByRef target As T, value As T) As T
target = value
Return value
End Function
View result on codility
Here is an alternative solution to the proposed by me before, more readable and understandable:
int solution(vector<int> & A){
if(A.size() < 4 )
return 0;
int maxSum = 0;
int sumLeft = 0;
unordered_map<int, int> leftSums;
leftSums[0] = 0;
for(int i = 2; i < A.size()-1; i++){
sumLeft += A[i-1];
if(sumLeft < 0)
sumLeft = 0;
leftSums[i-1] = sumLeft;
}
int sumRight = 0;
unordered_map<int, int> rightSums;
rightSums[A.size()-1] = sumRight;
for( int i = A.size() - 3; i >= 1; i--){
sumRight += A[i+1];
if(sumRight < 0)
sumRight = 0;
rightSums[i+1] = sumRight;
}
for(long i = 1; i < A.size() - 1; i++){
if(leftSums[i-1] + rightSums[i+1] > maxSum)
maxSum = leftSums[i-1] + rightSums[i+1];
}
return maxSum;
}
Well, I have my solution, may be not the best one bit 100%/100%, according to codility requierments.
#include<vector>
#include<unordered_map>
#include<algorithm>
using namespace std;
int solution(vector<int> &A) {
unordered_map<size_t, int> maxSliceLeftToRight;
maxSliceLeftToRight[1] = 0;
unordered_map<size_t, int> maxSliceRightToLeft;
maxSliceRightToLeft[A.size() - 2] = 0;
int sum = 0;
for (size_t i = 2; i < A.size() - 1; i++) {
int tmpSum = max(sum + A[i - 1], 0);
sum = max(A[i - 1], tmpSum);
maxSliceLeftToRight[i] = sum;
}
sum = 0;
for (size_t i = A.size() - 3; i > 0; i--) {
int tmpSum = max(sum + A[i + 1], 0);
sum = max(A[i + 1], tmpSum);
maxSliceRightToLeft[i] = sum;
}
int maxDoubleSliceSum = 0;
for (auto & entry : maxSliceLeftToRight) {
int maxRight = maxSliceRightToLeft[entry.first];
if (entry.second + maxRight > maxDoubleSliceSum)
maxDoubleSliceSum = entry.second + maxRight;
}
return maxDoubleSliceSum;
}
Here 100% in python,
might not be as elegant as some other solutions above, but considers all possible cases.
def solution(A):
#Trivial cases
if len(A)<=3:
return 0
idx_min=A.index(min(A[1:len(A)-1]))
minval=A[idx_min]
maxval=max(A[1:len(A)-1])
if maxval<0:
return 0
if minval==maxval:
return minval*(len(A)-3)
#Regular max slice if all numbers > 0
if minval>=0:
max_ending=0
max_slice=0
for r in range(1,len(A)-1):
if (r!=idx_min):
max_ending=max(0,A[r]+max_ending)
max_slice = max(max_slice, max_ending)
return max_slice
#Else gets more complicated
else :
#First remove negative numbers at the beginning and at the end
idx_neg=1
while A[idx_neg] <= 0 and idx_neg<len(A) :
A[idx_neg]=0
idx_neg+=1
idx_neg=len(A)-2
#<0 , 0
while A[idx_neg] <= 0 and idx_neg > 0 :
A[idx_neg]=0
idx_neg-=1
#Compute partial positive sum from left
#and store it in Left array
Left=[0]*len(A)
max_left=0
for r in range(1,len(A)-1):
max_left=max(0,A[r]+max_left)
Left[r]=max_left
#Compute partial positive sum from right
#and store it in Right array
max_right=0
Right=[0]*len(A)
for r in range(len(A)-2,0,-1):
max_right=max(0,A[r]+max_right)
Right[r]=max_right
#Compute max of Left[r]+Right[r+2].
#The hole in the middle corresponding
#to Y index of double slice (X, Y, Z)
max_slice=0
for r in range(1,len(A)-3):
max_slice=max(max_slice,Left[r]+Right[r+2])
return max_slice
pass
Think I got it based on Moxis Solution. Tried to point out the Intension.
class Solution {
public int solution(int[] A) {
int n = A.length - 1;
// Array with cummulated Sums when the first Subarray ends at Index i
int[] endingAt = new int[A.length];
int helperSum = 0;
// Optimal Subtotal before all possible Values of Y
for(int i = 1; i < n; ++i ) {
helperSum = Math.max(0, A[i] + helperSum);
endingAt[i] = helperSum;
}
// Array with cummulated Sums when the second Subarray starts at Index i
int[] startingAt = new int[A.length];
helperSum = 0;
// Optimal Subtotal behind all possible Values of Y
for(int i = (n - 1); i > 0; --i ) {
helperSum = Math.max(0, A[i] + helperSum);
startingAt[i] = helperSum;
}
//Searching optimal Y
int sum = 0;
for(int i = 0; i < (n - 1); ++i) {
sum = Math.max(sum, endingAt[i] + startingAt[i+2]);
}
return sum;
}
}
Here is the Python version of the proposed solution with complexity O(N) and %100 correctness and performance.
#Find the maximal sum of any double slice.
#https://app.codility.com/programmers/lessons/9-
#maximum_slice_problem/max_double_slice_sum/
import sys
def solution(A):
n=len(A)
max_sum_endingat=[0]*n
max_sum_startat=[0]*n
if(n<=3):
return 0
else:
for i in range(1,n-1):
max_sum_endingat[i] =max(0,max_sum_endingat[i-1] + A[i])
for i in range(n-2,0,-1):
max_sum_startat[i] =max(0,max_sum_startat[i+1] + A[i])
max_double=-sys.maxsize
for k in range(1,n-1):
max_double=max(max_double,max_sum_endingat[k-1]+max_sum_startat[k+1])
return max_double
This is my solution. It got 92%. Its a modified version of the original concept except I'm keep track of a minimal value to use as the position Y, and I'm shifting the sum of the entire interval accordingly.
Note: If anyone has any idea why it's only 92% feel free to let me know
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int max = -10001, sum = 0, min=A[1];
for(int i = 1; i < A.length-1; i++){
sum += A[i];
min = Math.min(A[i], min);
max = Math.max(sum-min, max);
if(sum - min < 0){
sum = 0;
min = A[i+1];
}
}
return max;
}
}
Single-loop, no extra memory dynamic programming solution in Python:
def solution(A):
max_gap_sum = 0
gapless_sum, gap_sum = 0, float("-inf")
for v in A[1:-1]:
gapless_sum, gap_sum = max(gapless_sum + v, 0), max(gap_sum + v, gapless_sum)
max_gap_sum = max(max_gap_sum, gap_sum)
return max_gap_sum
Java solution, 100/100
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int maxEnd = 0, maxSlice = Integer.MIN_VALUE;
for(int val : A) {
maxEnd = Math.max(val, maxEnd + val);
maxSlice = Math.max(maxSlice, maxEnd);
}
return maxSlice;
}
}

Categories

Resources