Random Circle Printer Java: Graphics not printing - java

I tried to create a code that printed n random circles in a 500 x 500 frame but it didn't work.
Can somebody tell me why this code isn't running?
When I run this code, it lets me enter the number of random circles I want but the frame always appear to be empty - no circles are drawn.
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.geom.Ellipse2D;
import java.util.Scanner;
import javax.swing.JComponent;
import javax.swing.JFrame;
public class RandomCircles extends JComponent
{
private int n;
public RandomCircles(int N)
{
n = N;
}
public void PaintComponent(Graphics g)
{
Graphics2D g2 = (Graphics2D) g;
double x = Math.random() * 500;
double y = Math.random() * 500;
double diameter = Math.random() * 500;
// Making sure the circle stays within the frame
for (int i = 0; i < n; i++)
{
while(x + diameter <= 500 || y + diameter <= 500)
{
Ellipse2D.Double circle
= new Ellipse2D.Double(x, y, diameter, diameter);
g2.draw(circle);
}
}
}
public static void main(String[]args)
{
Scanner in = new Scanner(System.in);
System.out.println("Enter number of circles here: ");
int n = in.nextInt();
JFrame frame = new JFrame();
frame.setSize(500, 500);
frame.setTitle("Random Circles");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
RandomCircles circle = new RandomCircles(n);
frame.add(circle);
// Add PaintComponent method somewhere here?
frame.setVisible(true);
}
}
I have a feeling that I need to add in the public void PaintComponent(Graphics g) somewhere to print it out, but I am not sure how.

The problem is on this line:
public void PaintComponent(Graphics g)
You are attempting to override the paintComponent(Graphics) method. You need to be careful that you get the name and the parameters right. Notice you spelled your method with an upper case P.
It is advisable that you add the annotation #Override on methods that are supposed to override a super class' method. That way you get a notification if you get the signature wrong.
So your method should look like this:
#Override
public void paintComponent(Graphics g)
{
Graphics2D g2 = (Graphics2D) g;
...
}
== Edit after comments ==
The while loop is also causing an issue. Try doing this instead.
for (int i = 0; i < n; i++)
{
double x = Math.random() * 500;
double y = Math.random() * 500;
double diameter = Math.random() * 500;
Ellipse2D.Double circle
= new Ellipse2D.Double(x, y, diameter, diameter);
g2.draw(circle);
}
Notice that I moved the random number generation inside the loop. This does not guarantee the circle fitting in the frame but that is something you can modify later.

Related

Draw random dots inside a circle

I would like to draw 50 random dots within a given circle. The problem is the dots are not contained in the circle. Here is a runnable example:
package mygraphicsshapehomework;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import javax.swing.JFrame;
public class MyGraphicsShapeHomeWork extends JFrame {
public static void main(String[] args) {
new MyGraphicsShapeHomeWork();
}
public MyGraphicsShapeHomeWork() {
super("Title");
setBounds(600, 400, 700, 400);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
}
#Override
public void paint(Graphics g) {
super.paint(g);
Graphics2D g2 = (Graphics2D) g;
g2.drawOval(40, 40, 90, 90);
Color newColor = new Color(255, 0, 0);
g2.setColor(newColor);
for (int i = 0; i < 50; i++) {
int x = (int) Math.ceil(Math.random() * 10);
int y = (int) Math.ceil(Math.random() * 10);
g2.fillOval(i+x, i+y, 3, 3); // ???
}
}
}
Here is the result it produces:
How can I draw the dots within the circle only?
To get a random point in a circle with radius R find a random angle and a random radius:
double a = random() * 2 * PI;
double r = R * sqrt(random());
Then the coordinates of the point are:
double x = r * cos(a)
double y = r * sin(a)
Here are some notes about the drawing part. You should not paint directly on top level container such as JFrame. Instead, use JComponent or JPanel. Override paintComponent() for painting rather than paint() and don't forget to call super.paintComponent(g)
Take a look at Performing Custom Painting tutorial for more information.
Do not use setBounds(), override panel's getPreferredSize() and pack() the frame. Also, you rarely need to extend JFrame.
Here is a basic example that demonstrates drawing with a sub-pixel precision:
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.geom.Ellipse2D;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
public class TestDots extends JPanel{
public static final int POINTS_NUM = 1000;
public static final Color POINT_COLOR = Color.RED;
#Override
public Dimension getPreferredSize() {
return new Dimension(400, 400);
}
#Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2.setRenderingHint(RenderingHints.KEY_STROKE_CONTROL, RenderingHints.VALUE_STROKE_PURE);
double padding = 10;
double radius = Math.min(this.getWidth(), this.getHeight()) / 2 - padding * 2;
g2.draw(new Ellipse2D.Double(padding, padding, radius * 2, radius * 2));
g2.setColor(POINT_COLOR);
for (int i = 0; i < POINTS_NUM; i++) {
double a = Math.random() * 2 * Math.PI;
double r = radius * Math.sqrt(Math.random());
double x = r * Math.cos(a) + radius + padding;
double y = r * Math.sin(a) + radius + padding;
g2.draw(new Ellipse2D.Double(x, y, 1, 1));
}
}
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {
JFrame frame = new JFrame("TestDots");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setLocationByPlatform(true);
frame.add(new TestDots());
frame.pack();
frame.setVisible(true);
}
});
}
}
Here is a result:
For the position of the dots, generate random coordinates within the bounds of the outer circle. In order to generate these coordinates, the radius of the point from the center of the circle must be less than that of the outer circle. Get a random angle using
float a = Math.random() * Math.PI * 2;
Then, subtract a random value from the outer radius:
outerR - (Math.sqrt(Math.random()) * outerR)
and assign the positions to:
double x = Math.cos(a)*newR;
double y = Math.sin(a)*newR;
I'm sure there is a more mathematical approach to this, but this was the simplest in my opinion.

Java - Calculating and placing the angle of a geometric shape

I'm currently working on a program which enables user to draw various geometric shapes. However, I got some issues on calculating and placing the angle objects onto my Canvas panel accurately. The angle object is basically an extension of the Arc2D object, which provides a additional method called computeStartAndExtent(). Inside my Angle class, this method computes and finds the necessary starting and extension angle values:
private void computeStartAndExtent()
{
double ang1 = Math.toDegrees(Math.atan2(b1.getY2() - b1.getY1(), b1.getX2() - b1.getX1()));
double ang2 = Math.toDegrees(Math.atan2(b2.getY2() - b2.getY1(), b2.getX2() - b2.getX1()));
if(ang2 < ang1)
{
start = Math.abs(180 - ang2);
extent = ang1 - ang2;
}
else
{
start = Math.abs(180 - ang1);
extent = ang2 - ang1;
}
start -= extent;
}
It is a bit buggy code that only works when I connect two lines to each other, however, when I connect a third one to make a triangle, the result is like the following,
As you see the ADB angle is the only one that is placed correctly. I couldn't figure how to overcome this. If you need some additional info/code please let me know.
EDIT: b1 and b2 are Line2D objects in computeStartAndExtent() method.
Thank you.
There are some of things that can be made to simplify the calculation:
Keep the vertices ordered, so that it is always clear how to calculate the vertex angles pointing away from the corner
Furthermore, always draw the polygon to the same direction; then you can always draw the angles to the same direction. The example below assumes the polygon is drawn clockwise. The same angle calculation would result in the arcs drawn outside given a polygon drawn counterclockwise.
Example code; is not quite the same as yours as I don't have your code, but has similar functionality:
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Shape;
import java.awt.geom.Arc2D;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
public class Polygon extends JPanel {
private static final int RADIUS = 20;
private final int[] xpoints = {
10, 150, 80, 60
};
private final int[] ypoints = {
10, 10, 150, 60
};
final Arc2D[] arcs;
Polygon() {
arcs = new Arc2D[xpoints.length];
for (int i = 0; i < arcs.length; i++) {
// Indices of previous and next corners
int prev = (i + arcs.length - 1) % arcs.length;
int next = (i + arcs.length + 1) % arcs.length;
// angles of sides, pointing outwards from the corner
double ang1 = Math.toDegrees(Math.atan2(-(ypoints[prev] - ypoints[i]), xpoints[prev] - xpoints[i]));
double ang2 = Math.toDegrees(Math.atan2(-(ypoints[next] - ypoints[i]), xpoints[next] - xpoints[i]));
int start = (int) ang1;
int extent = (int) (ang2 - ang1);
// always draw to positive direction, limit the angle <= 360
extent = (extent + 360) % 360;
arcs[i] = new Arc2D.Float(xpoints[i] - RADIUS, ypoints[i] - RADIUS, 2 * RADIUS, 2 * RADIUS, start, extent, Arc2D.OPEN);
}
}
#Override
public Dimension getPreferredSize() {
return new Dimension(160, 160);
}
#Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
g.drawPolygon(xpoints, ypoints, xpoints.length);
Graphics2D g2d = (Graphics2D) g;
for (Shape s : arcs) {
g2d.draw(s);
}
}
public static void main(String args[]){
SwingUtilities.invokeLater(new Runnable() {
#Override
public void run() {
JFrame frame = new JFrame("Polygon");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.add(new Polygon());
frame.pack();
frame.setVisible(true);
}
});
}
}
Results in:

Checkerboard center and resizing in java

I wrote a checkerboard program (shown below). My problem is that I can't figure out how to center it with resize, and have it resize proportionately.
I added in a short statement. Int resize (shown below) I did something similiar with a previous program regarding a bullseye where I used a radius. I just haven't the slightest clue how to implement that in here.
import java.awt.*;
import javax.swing.JComponent;
public class CheckerboardComponent extends JComponent {
#Override
public void paintComponent(Graphics g) {
Graphics2D g2 = (Graphics2D) g;
g2.setColor(Color.RED);
int s = 12;
int x = s;
int y = s;
// int resize = Math.min(this.getHeight(), this.getWidth()) / 8 ;
for (int i = 0; i < 8; i++) {
// one row
for (int j = 0; j < 8; j++) {
g2.fill(new Rectangle(x, y, 4 * s, 4 * s) );
x += 4 * s;
if(g2.getColor().equals(Color.RED)){
g2.setColor(Color.BLACK);
}else{
g2.setColor(Color.RED);
}
}
x = s;
y += 4 * s;
if(g2.getColor().equals(Color.RED)){
g2.setColor(Color.BLACK);
}else{
g2.setColor(Color.RED);
}
}
}
}
here is a viewer program
import javax.swing.*;
public class CheckersViewer {
public static void main(String[] args) {
JFrame frame = new JFrame();
frame.setSize(430, 450);
frame.setTitle("Checkerboard");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
CheckerboardComponent component = new CheckerboardComponent();
frame.add(component);
frame.setLocationRelativeTo(null);
frame.setVisible(true);
}
}
Hmm... Here's one idea then, though it probably isn't a good one (I'm also not that good with jComponent and jFrame, so there's probably a better way and a more suited person)
I believe the component object has a built-in method called getSize(). If you can relate the size of the rectangle to the size of the window, then it could be resizable. Obviously there would be more code and arguments, but for example:
public void drawStuff(Component c)
{
...
Dimension size = c.getSize();
double RectWidth = (size.width)*(.05);
...
}
check this out for more complete examples:
http://www.javadocexamples.com/java/awt/Component/getSize().html
And I apologize I can't be of more help.

How do you move an object in a wavy pattern?

I know the following code will move an object in a straight line. How can I get the object to travel in a wavy line? I know that something extra is required for the x variable.
public void draw(Graphics2D g)
{
g.setColor(Color.WHITE);
g.fillOval ((int) (x - r), (int) (y - r), (int)
(2 * r),
(int) (2 * r));
y++;
if (y - r > height)
y = -r;
}
Use the sine or cosine function to calculate y as a function of x.
Multiply the sine or cosine function to increase the amplitude (how high it goes)
y = 100 * sin(x) // will make it have peaks of -100 and 100
Divide the x to increase the period. (distance between peaks)
y = sin(x/2) // will make it take twice the x distance between peaks.
Something like this:
public void draw(Graphics2D g)
{
g.setColor(Color.WHITE);
g.fillOval ((int) (x - r), (int) (y - r), (int)
(2 * r),
(int) (2 * r));
x++; // Left to right movement
// Example, modify the multipliers as necessary
y = 100 * Math.sin(Math.toDegrees(x/4))
}
Including a sin(x) or cos(x) in your function will provide a regular wave pattern, irregular pattern needs a more sophisticated function
I know you already accepted an answer, but here's something to draw additional inspiration from that I whipped up...
package wavy;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.util.Timer;
import java.util.TimerTask;
import javax.swing.JFrame;
import javax.swing.JPanel;
public class Wavy {
public static void main(String[] args) {
final JFrame frame = new JFrame("Wavy!");
final WavyPanel wp = new WavyPanel();
frame.getContentPane().add(wp, BorderLayout.CENTER);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
final Ticker t = new Ticker(wp);
final Repainter r = new Repainter(wp);
frame.pack();
frame.setVisible(true);
final Timer tickTimer = new Timer();
final Timer paintTimer = new Timer();
paintTimer.schedule(r, 1000, 50);
tickTimer.schedule(t, 1000, 10);
}
private static class WavyPanel extends JPanel {
private final Dimension size = new Dimension(640, 480);
private int amplitude = 50;
private int frequency = 5;
private int x = 0;
private double y = size.height / 2;
private int yBase = 0;
WavyPanel() {
super(true);
}
#Override
protected void paintComponent(final Graphics g) {
final Graphics2D g2 = (Graphics2D)g;
g2.setColor(Color.WHITE);
g2.fillRect(0, 0, size.width, size.height);
g2.setColor(Color.BLACK);
g2.fillOval(x, (int)y, 30, 30);
}
#Override
public Dimension getPreferredSize() {
return size;
}
#Override
public Dimension getMinimumSize() {
return size;
}
#Override
public Dimension getMaximumSize() {
return size;
}
public void tick() {
//Move a pixel to the right; loop over to the left when reaching edge
x = (++x) % size.width;
//Length of one full wave = panel width divided by frequency
final int waveLength = size.width / frequency;
//Incrementing yBase; capping off at wavelength
yBase = (++yBase) % waveLength;
//Normalizing to [0..1]
final double normalized = (double)yBase / (double)waveLength;
//Full wave at 2*pi, means...
final double radians = normalized * Math.PI * 2;
//Getting the sine
final double sine = Math.sin(radians);
//Multiplying with amplitude, add to center position and we have our y
y = (int)(sine * amplitude) + size.height/2;
}
}
private static class Ticker extends TimerTask {
private final WavyPanel panel;
Ticker(final WavyPanel panel) {
this.panel = panel;
}
#Override
public void run() {
panel.tick();
}
}
private static class Repainter extends TimerTask {
private final WavyPanel panel;
Repainter(final WavyPanel panel) {
this.panel = panel;
}
#Override
public void run() {
panel.repaint();
}
}
}
This should run at an approximate 20 frames per second. You can increase this by setting the second argument of paintTimer.schedule(r, 1000, 50) lower. The speed of movement can be altered by lowering (speeding up) or increasing (slower) the second argument of tickTimer.schedule(t, 1000, 50).
Changing the amplitude field of WavyPanel will change how high/low the circle moves. Changing the frequency to a higher value will result in shorter waves, while a lower value will produce longer waves.
With some additional work you could add in controls to change the amplitude and frequency on-the-fly. Some additional notes:
You may wish to add some safeguard to the tick() method to make sure that when one invocation is already running, additional ones are skipped until the first one is done. Otherwise the calculations could fail for short tick intervals. A semaphore could be used here.
Since trigonometric calculations aren't exactly the cheapest, you may consider caching some results (e.g. in an array) for re-use if many similar animations are to be played or if there's a lot more drawing going on.
I hope I'm interpreting this right. Could use the sine or cosine of either your x or y coordinate. I'm not at a machine with java so I can't make an example at the moment..
You're right that you need to update both the x and y variables to get a wavy line. Here's the general strategy for a horizontal line that is wavy up and down:
Choose a function f(x) that has the shape you want. This will be used to calculate values for y. (For instance, you can use y = amplitude * Math.sin(frequency * x) to get a regular sine wave of a given amplitude and frequency.)
If necessary, write the code that implements your function.
Set x to some initial value.
In draw, before you paint the oval, calculate y = f(x);. Paint the oval and then increment x. If necessary, reset x so it stays in range.
If you want a vertical line that is wavy left and right, just reverse the roles of x and y in the above. If you want the oval to go in the reverse direction, just decrement instead of increment in step 4.
this sample is for point(Line with one length) on sinus graph and clock using.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class RunSwing extends JPanel {
static int x1 = 500;
static int y1 = 500;
static int x2 = x1;
static int y2 = y1;
final static int vectorLength = 100;
final static int sinx2 = x2;
final static int siny2 = y2;
static double count = 0;
private static RunSwing run = new RunSwing();
final Timer print = new Timer(1000, new ActionListener() {
#Override
public void actionPerformed(final ActionEvent e) {
//increaseSinusGraph();
increaseClockVector();
count+=6; //for clock for 1 second
/*count++;//for sinus*/
if (count % 360 == 0)
System.out.println((count / 360) + " minute passed");
}
});
RunSwing() {
print.start();
}
public static void main(String[] args) {
JFrame frame = new JFrame("amir");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.add(run);
frame.setSize(1100, 700);
frame.setVisible(true);
}
static void increaseClockVector() {
double cos = Math.cos(Math.toRadians(count));
double sin = Math.sin(Math.toRadians(count));
y2 = siny2 + (int) (vectorLength * sin);
x2 = sinx2 + (int) (vectorLength * cos);
}
static void increaseSinusGraph() {
double sin = Math.sin(Math.toRadians(count));
y2 = siny2 + (int) (vectorLength * sin);
x2++;
}
private void createPoint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;
g2d.drawLine(x2, y2, x2 + 1, y2 + 1);
}
#Override
public void paintComponent(Graphics g) {
super.paintComponent(g);
g.setColor(new Color(0, 0, 0));
g.drawLine(x1, y1, x2, y2);//for clock
/*g.drawLine(x2, y2, x2+1, y2+1);//for sinus*/
repaint();
}
}

Draw a circle with a radius and points around the edge

I'm really stuck on how to go about programming this. How to draw a circle in Java with a radius and points around the edge?
I need to draw a circle within a JFrame with a radius and points around the circumference. i can mathematically calculate how to find the coordinates of the point around the edge but i cant seem to be able to program the circle. I am currently using a Ellipse2D method but that doesn't seem to work and doesn't return a radius, as under my understanding, it doesn't draw the circle from the center rather from a starting coordinate using a height and width.
My current code is on a separate frame but I need to add it to my existing frame.
import java.awt.*;
import javax.swing.*;
import java.awt.geom.*;
public class circle extends JFrame {
public circle() {
super("circle");
setSize(410, 435);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Panel sp = new Panel();
Container content = getContentPane();
content.add(sp);
setContentPane(content);
setVisible(true);
}
public static void main (String args[]){
circle sign = new circle();
}
}
class Panel extends JPanel {
public void paintComponent(Graphics comp) {
super.paintComponent(comp);
Graphics2D comp2D = (Graphics2D) comp;
comp2D.setColor(Color.red);
Ellipse2D.Float sign1 = new Ellipse2D.Float(0F, 0F, 350F, 350F);
comp2D.fill(sign1);
}
}
Points on a circle may be specified as a function of the angle θ:
x = a + r cos(θ)
y = b + r sin(θ)
Here, increments of 2π/8 are shown.
Addendum: As suggested in a comment by #Christoffer Hammarström, this revised example reduces the number of magic numbers in the original. The desired number of points becomes a parameter to the constructor. It also adapts the rendering to the container's size.
/** #see https://stackoverflow.com/questions/2508704 */
public class CircleTest extends JPanel {
private static final int SIZE = 256;
private int a = SIZE / 2;
private int b = a;
private int r = 4 * SIZE / 5;
private int n;
/** #param n the desired number of circles. */
public CircleTest(int n) {
super(true);
this.setPreferredSize(new Dimension(SIZE, SIZE));
this.n = n;
}
#Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2d = (Graphics2D) g;
g2d.setRenderingHint(
RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
g2d.setColor(Color.black);
a = getWidth() / 2;
b = getHeight() / 2;
int m = Math.min(a, b);
r = 4 * m / 5;
int r2 = Math.abs(m - r) / 2;
g2d.drawOval(a - r, b - r, 2 * r, 2 * r);
g2d.setColor(Color.blue);
for (int i = 0; i < n; i++) {
double t = 2 * Math.PI * i / n;
int x = (int) Math.round(a + r * Math.cos(t));
int y = (int) Math.round(b + r * Math.sin(t));
g2d.fillOval(x - r2, y - r2, 2 * r2, 2 * r2);
}
}
private static void create() {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.add(new CircleTest(9));
f.pack();
f.setVisible(true);
}
public static void main(String[] args) {
EventQueue.invokeLater(new Runnable() {
#Override
public void run() {
create();
}
});
}
}
Try something like this:
public class CirclePanel extends JPanel
{
public static void main(String[] args) throws Exception
{
JFrame f = new JFrame();
f.setContentPane(new CirclePanel());
f.setSize(700,500);
f.setVisible(true);
}
public void paint(Graphics g)
{
super.paint(g);
//Draws the line
g.drawOval(0,0,this.getWidth(), this.getHeight());
//draws filled circle
g.setColor(Color.red);
g.fillOval(0,0,this.getWidth(), this.getHeight());
}
}
You can also override the paint method in the frame class, but then the you would have to calculate in the size of the window decorations and it gets dirty there...
I recommend to take some time to review the "midpoint circle algorithm or Bresenham's circle algorithm". The accepted solution is based on very costly math operations like float multiplication and trigonometric functions.

Categories

Resources