I have some #Service FooService which on request, makes an API call to some external service and returns some FooResult.
In my project I defined some FooTask. This is actually a wrapper of a java.util.Function (and it being used in some CompletableFuture chain)
Ideally, I'd like the task to call FooService.request(). One solution could be injecting the FooService in the constructor but I'm not sure that's a good idea.
What is the Spring way to do that?
I don't think using FooTask as a Spring Component(a class which is annotated with #Component annotation) causes any problem if your FooTask is a Functional Wrapper and does not save any state, However if your FooTask maintain some state or you want to create multiple instances of that somewhere in your application you can create instances of FooTask outside Spring framework and autowire FooService in it, this is exactly possible using AutowiredCapableBeanFactory but don't go for this approach unless it is necessary:
Do it this way to autowire your FooService in FooTask:
private #Autowired
AutowireCapableBeanFactory beanFactory;
public void doSomething() {
FooTask fooTask = new FooTask();
beanFactory.autowireBean(fooTask);
// obj will now have its dependencies autowired.
}
Related
I am writing a small CRUD in Spring and Java. And I want to use a separate file for writing logic, this is very convenient for me, I did this when developing with NestJS. I have a few questions, is it correct to do this in Spring, or should I do everything inside a function in the controller. And if I write logic in a separate file, I should mark the logic class as #Component and the functions inside it as #Bean, right? I am new to Spring and as I understand it, I have to do this in order for the application to work correctly and my functions to be in the application context.
AuthLogic.java
#Component
public class AuthLogic {
#Bean
public void register() {
// code ...
}
}
AuthController.java
#RestController
public class AuthController {
#RequestMapping(value = "/register", method = RequestMethod.POST)
#ResponseStatus(HttpStatus.CREATED)
public void register(#Valid #RequestBody UserDTO newUser) {
// here I call the register function from AuthLogic
}
}
you can mark your logic class with #Service and use that for example you can make a AuthService and use it like
#Service
public class AuthService{
public returnType login(){
//Logic
}
}
and use this like
#RestController
public class AuthController {
AuthService authService;
#RequestMapping(value = "/register", method = RequestMethod.POST)
#ResponseStatus(HttpStatus.CREATED)
public void register(#Valid #RequestBody UserDTO newUser) {
authService.login();
}
}
You can write your business logic in a new separate file at service layer.
Suppose you name it as AuthService and you mark it with annotation #Service.
#Service
public class AuthService{
}
You can then Autowire it in your controller class.
#RestController
public class AuthController {
#Autowired
AuthService authService;
#RequestMapping(value = "/register", method = RequestMethod.POST)
#ResponseStatus(HttpStatus.CREATED)
public void register(#Valid #RequestBody UserDTO newUser) {
// here I call the register function from AuthLogic
}
}
Using separate files, or classes more importantly, is very recommended in Spring, and I assume most other languages.
The #Bean annotation on AuthLogic.java is unneeded and I think may cause startup or compilation errors.
I would change the name of AuthLogic to AuthLogicImpl, create an interface named AuthLogic with the method signature void register(), and have AuthLogicImpl implement AuthLogic. Then you can create a constructor for AuthController which accepts and AuthLogic parameter and sets it to a private field (note using the interface not the implementation in the constructor).
At the core of Spring is the IoC container. This container holds "beans" that can be injected or autowired into other beans. These beans are an instance of their class and can be used by other beans. Remember Spring uses the singleton pattern, so your beans should be stateless. This allows Spring to handle the application startup for you, so you don't need to write a ton of code creating all the different services/classes and wiring them together, it's all automagically done for you.
There are two key annoitations that you appear to be confused about:
#Component Putting this above a class will create an instance of that class (a bean) and put it into the IoC container. Other beans can access this by accepting the original beans interface in its constructor. So if I put #Component above my class FooImpl which implements Foo, then I can create a class, BarImpl with the constructor public BarImpl(Foo foo) {this.foo = foo} and BarImpl can use any public method of Foo (which will use FooImpl's implementation).
#Bean this is to be put on a method of a class that is annotated with #Configuration. This tells Spring that this method should be run at startup, and this method will return a bean that Spring should add to the IoC container. This is a popular way of configuring a bean that requires some parameters, such as the bean that manages the connection to a third party service or datastore, especially when that there is a little bit of logic that needs to go into creating the bean.
Note that the above is very broad, and there are some specifics if you need to dig deep into the spring framework, so there will be more clarification in the Spring documentation or you dig into some established Spring project. However it should suffice to answer the broad question of what is going on with #Component and #Bean.
There is no specific layout or code structure for Spring Boot Projects. However, there are some best practices followed by developers that will help us too. You can divide your project into layers like service layer, entity layer, and repository layer.
We use the entity layer to write all model and POJO classes. We annotate them with #Entity.
We use #Repository to indicate that this is a repository interface that is used to do some basic CRUD operations.
Sidenote:- You don't have to write #Repository for classes that implement or interfaces that extends Repository interfaces provided by Spring Boot framework.
We use #Service to say that this is the service class where your all business logic will be present.
We use the controller layer to receive HTTP requests and send back HTTP Responses or views.
You can learn and understand more from here
You can refer to this Image to understand the structure
project structure
I know that there are questions similar to this one, but none of them have helped me. I'm following along this tutorial, and the part I can't wrap my mind around is:
#SpringBootApplication
public class Application {
private static final Logger log =
LoggerFactory.getLogger(Application.class);
public static void main(String[] args) {
SpringApplication.run(Application.class);
}
#Bean
public CommandLineRunner demo(CustomerRepository repository) {
return (args) -> {
// save a couple of customers
...
// more lines, etc...
What I don't understand is where the repository passed into demo comes from. I know that the Autowired annotation can do something like that, but it isn't used at all here.
The more specific reason I ask is because I'm trying to adapt what they do here to an application I'm working on. I have a class, separate from all of the persistence/repository stuff, and I want to call repository methods like save and findAll. The issue is that the repository is an interface, so I can't instantiate an object of it to call the methods. So do I have to make a new class that implements the interface and create an object of that? Or is there an easier way using annotations?
When creating a #Bean, adding the repository in the parameters of the bean is enough to wire the repos in your bean. This works pretty much like adding #Autowired annotation inside a class that is annotated as #Component or something similar.
Spring works mostly with interface, since that is simplier to wire vs wiring concrete classes.
Can you try #Repository before the declaration of class? Worked for me in a Spring MVC structure.
#Repository
public class EntityDAOImpl implements EntityDAO{
...
}
The thing to wrap your head around is a Spring Boot application at startup time aims to resolve its dependancy tree. This means discovering and instantiating Beans that the application defines, and those are classes annotated with #Service, #Repository, etc.
This means the default constructor (or the one marked with #Autowire) of all beans is invoked, and after all beans have been constructed the application starts to run.
Where the #Bean annotation comes into play is if you have a bean which does not know the values of it's constructor parameters at compile time (e.g. if you want to wire in a "started at" timestamp): then you would define a class with an #Configuration annotation on it, and expose an #Bean method in it, which would return your bean and have parameters that are the beans dependencies. In it you would invoke the beans constructor and return the bean.
Now, if you want a certain method of some class to be invoked after the application is resolved, you can implement the CommandLineRunner interface, or you can annotate a method with #PostConstruct.
Some useful links / references:
https://docs.spring.io/spring-javaconfig/docs/1.0.0.m3/reference/html/creating-bean-definitions.html
https://www.baeldung.com/spring-inject-prototype-bean-into-singleton
Running code after Spring Boot starts
Execute method on startup in Spring
I have several service like that:
#Singleton
public SimpleService {
...
}
I have Managed Bean #ViewScoped which should create some complex objects. These objects should execute business-logic. I need to pass these services to this object.
Example of Managed Bean:
#ManagedBean
#ViewScoped
public class ExampleBean {
#Inject
private SimpleService simpleService;
...
public void customLogic() {
// in this method I should create complex object which should have services and some data.
// current implementation
ComplexObject object = new ComplexObject(SimpleService simpleService, ...)
}
}
Services are injected to Managed Bean by #Inject annotation. For creating these objects - I'm using the constructor and pass these services as params. The question is: can I have better solution than passing services in constructor?
You can:
Inject by method:
private MyService myService;
#Inject
public void setMyService(MyService ms) {
this.myService = ms;
}
Inject by field:
#Inject
private MyService myService;
Fetch reference through CDI (not recommended, except in advanced usecases):
...
MyService myService = CDI.current().select(MyService.class).get();
...
Fetch reference through BeanManager (not recommended, except in advanced usecases or CDI 1.0):
...
BeanManager beanManager = CDI.getBeanManager(); // you can fetch a BeanManager reference by several other methods, I use CDI for simplicity here
MyService myService = beanManager.getReference(MyService.class);
...
If your #Singleton annotation is javax.ejb.Singleton and not javax.inject.Singleton, then your bean is actually a EJB and you can also use any mechanism that allows you to access EJB, such as #Resource annotations, or through the JNDI context.
Personally I tend to inject by method as I find it the most flexible option most of the time. In my opinion it is also the most "portable" to other frameworks (e.g: Spring)
Remember that when you use either the CDI.current() or the BeanManager methods to fetch #Dependent beans, you are responsible to manually destroy the fetched bean when you are done with it, so that you do not fall into this CDI-related memory leak. When using CDI.current() it is as easy as saving the Instance reference and invoking it afterwards:
...
Instance<MyService> msInstance = CDI.current().select(MyService.class);
MyService myService = msInstance.get();
...
msInstance.destroy(myService);
...
The BeanManager method is too low-level and should only be used in CDI 1.0 environments (back when the CDI class did not exist yet). You can read the linked StackOverflow question for more details.
What you are doing is perfectly fine. You are using the ManagedBean as a bridge to inject the services and then passing the injected variables to a ComplexObject that need the services.
The only restriction that should be considered is, could the ComplexObject class be a ManagedBean itself? That way you could inject everything directly on it, but if it is not possible, you may use the bean for that.
I prefer the inject by field option mentioned because I think it is a little more readable.
I am trying to use and understand CDI, when I use #Inject in a simple pojo class, it throws me NPE.
example
Greeting.java
public Class Greeting {
public String greet() {
System.out.println("Hello");
}
}
Test.java
import javax.inject.Inject;
public class Test {
#Inject
private Greeting greeting;
public void testGreet() {
greeting.testGreet();
}
}
When I call testGreet() it throws NPE, why is the greeting instance null. Does #Inject way of adding dependency only be used in container managed bean?
Note: jar is not the problem here.
TL;DR:
#Inject-annotated fields are only populated for container-instantiated beans.
Long version:
The CDI container provides you a lot of utilities for easily injecting dependencies to your beans, but it doesn't work by magic. The container can only populate the annotated fields of a client bean if the client bean itself was instantiated by the container. When the container is instantiating the object the sequence of events is as follows:
Your bean's constructor is called.
#Inject-annotated fields (and some other
annotations, #PersistenceContext and #EJB for instance) are
populated.
#PostConstruct-annotated no-args method is called.
Your bean is finished.
You're facing a classic bootstrapping problem, how to move from non-container-managed code into container-managed code. Your options are:
Get access to an instance of BeanManager from your JavaEE container via JNDI lookup. This is technical and a bit clumsy.
Use a CDI extension library such as Apache DeltaSpike. (Example: BeanProvider.getContextualReference(Test.class, false);)
Modify your application to start in a situation where you can inject your Test class rather than calling new Test();. This can be done for example by setting up a startup singleton ejb, which calls your test in it's #PostConstruct-annotated initialisation.
Hope this helps.
You need a JavaEE container, and than you need to define Greeting and Test as managed beans. After that you can inject one in another.
Try to take a look at:
https://docs.oracle.com/javaee/6/tutorial/doc/girch.html
Your class should be implemented from Serializable for being injectable as a "CDI Bean"
I had the following set-up which worked perfectly fine:
#Service
public class MyService {
}
public class Test {
#Autowired
MyService service;
}
I changed MyService to implement a new interface, like this
#Service
public class MyService implements NewInterface {
}
There's nothing special in this interface, it's just a normal Java interface without any annotation and 2 very simple methods.
Now, Spring is not able to autowire this bean anymore, it gives a NoSuchBeanDefinitionException. I also tried to define it explicitly in the XML but it gave the same exception.
In case it's relevant, I'm using Spring 2.5 and build with Maven, the class Test is a unit test class. When I try to run the real application, it's using applicationContext.getBean() to get this service, and it gives the following exception: java.lang.ClassCastException: $Proxy81 cannot be cast to MyService.
What am I missing and what should I do?
When you see a class with a name like $Proxy81, it's telling you that Spring has auto-generated a proxy object for one of your beans, in this case a proxy object for the MyService bean. This uses java.lang.reflect.Proxy to generate the proxy object. This proxy object will implement the same interfaces as the class that's being proxied, but it will not be type-compatible with the target class itself.
Now, if the target class doesn't implement any interfaces, then Spring will instead use CGLIB to generate the proxy. This proxy will be a subclass of the target class, so the proxy object can be safely cast to the original type of the target object.
Now, when using the lower-level proxy-generation stuff in Spring, you can often override this behaviour, and tell it to always use CGLIB proxies, but I'm assuming that since you're using #Service, then you're also using <context:component-scan>, in which case I think you have to stick with the default behaviour.
It's not bad thing, though. This encourages you to not couple your classes together, but instead to program to interfaces. Any interaction with MyService should be expressible via interfaces, although this concept can get a little fuzzy when talking about unit testing.
It looks like you're autowiring by interface instead of autowiring by class name.
I'd simply code my test against the Interface:
public class Test {
#Autowired
NewInterface service;
}
Also, check this bug, it might be relevant to you since it appears like your class is being proxied.