I'm trying to mimic a java encryption routine in C# because the endpoint is java based and will be decrypting the value generated by C#.
I've tried different implementations using AesCryptoServiceProvider and AesManaged from several examples found in SO and around the web but I still can't get the java endpoint to successfully decrypt the value, it errors with {"message":"AUTHENTICATION_ERROR: Error while decrypting the cipher.","status":"Error"}.
Using postman I was able to call the java endpoint and retrieve a document using the
encrypted text generated by the java code posted below, so that part is positively verified.
The endpoint uses the header values to decrypt the text and verify the contents, here are the pertinent code pieces:
java encryption
private static Cipher generateCipher(int mode, String password, String salt, String iv, Integer iterations, Integer keySize) throws Exception {
byte[] saltBytes = salt.getBytes("UTF-8"); byte[]ivBytes = iv.getBytes("UTF-8");
// Derive the key
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
PBEKeySpec spec = new PBEKeySpec(password.toCharArray(), saltBytes, iterations, keySize);
SecretKey secretKey = factory.generateSecret(spec);
SecretKeySpec secret = new SecretKeySpec(secretKey.getEncoded(), "AES");
//encrypt the message
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); cipher.init(mode, secret, new IvParameterSpec(ivBytes));
return cipher;
}
public static String AES_encrypt(String plainText, String password, String salt, String iv, Integer iterations, Integer keySize) throws Exception {
Cipher cipher = generateCipher(Cipher.ENCRYPT_MODE, password, salt, iv, iterations, keySize);
byte[] encryptedTextBytes = cipher.doFinal(plainText.getBytes("UTF-8"));
Base64.Encoder encoder = Base64.getEncoder();
return encoder.encodeToString(encryptedTextBytes);
}
headers
interface_name: interfaceName
strength: 256
salt: salt_sixteen1234
iterate: 100
iv: sixteen_value_12
ciphertext: ECtKO7VluxCPFS/D8LVsb2bOQjhViIZm+O3zfMqSwJOLLTpDL4xdgwmIWr+41n5j
C# encrypt
...
using (var csp = new AesCryptoServiceProvider())
{
ICryptoTransform e = GetCryptoTransform(csp, true, key, salt, iv);
byte[] inputBuffer = Encoding.UTF8.GetBytes(plainText);
byte[] output = e.TransformFinalBlock(inputBuffer, 0, inputBuffer.Length);
string encrypted = Convert.ToBase64String(output);
return encrypted;
}
...
private static ICryptoTransform GetCryptoTransform(AesCryptoServiceProvider csp, bool encrypting, string password, string salt, string iv, int iterations)
{
csp.Mode = CipherMode.CBC;
csp.Padding = PaddingMode.PKCS7;
var spec = new Rfc2898DeriveBytes(Encoding.UTF8.GetBytes(password), Encoding.UTF8.GetBytes(salt), iterations);
byte[] key = spec.GetBytes(16);
csp.IV = Encoding.UTF8.GetBytes(iv);
csp.Key = key;
if (encrypting)
{
return csp.CreateEncryptor();
}
return csp.CreateDecryptor();
}
To test any C# encryption I added a decryption method to your Java code and run successfully a full round (encryption and decryption).
For the C# part I was too lazy to check your code (as #Topaco did it) and used my own code with your credentials to get an output that you can present to the Java decryption method.
Let's start with a longer Security warning: the codes are using a static initialization vector and a static salt and the iteration count
for PBKDF2 key derivation is much too low (a minimum of 10.000 should be used). The codes do not have any exception handling and are for educational purpose only.
Running the C#-code gives a short output:
AES CBC 256 string encryption with PBKDF2 SHA1 key derivation
plaintext: The quick brown fox jumps over the lazy dog
ciphertext: 5HMLSQKEgG+RADgPmf5Eyw0F/GG9sXFuWiHeuZxgpmJP+UoH4MZlvnQDrgnofQy4
Presenting the ciphertext to the Java decryption will give this output:
C# AES encrypt to java 8 decrypt
plaintext: The quick brown fox jumps over the lazy dog
ciphertext: 5HMLSQKEgG+RADgPmf5Eyw0F/GG9sXFuWiHeuZxgpmJP+UoH4MZlvnQDrgnofQy4
decryptedtext: The quick brown fox jumps over the lazy dog
decryption of a ciphertext from C#
ciphertextFromCsharp: 5HMLSQKEgG+RADgPmf5Eyw0F/GG9sXFuWiHeuZxgpmJP+UoH4MZlvnQDrgnofQy4
decryptedtextFromCsharp: The quick brown fox jumps over the lazy dog
Both codes are available for a live self test here (Java: https://repl.it/#javacrypto/JavaAes256EncryptionWithPBKDF2SHA1keyderivation, C#: https://repl.it/#javacrypto/CsharpAes256Pbkdf2Encryption#main.cs).
C#-code:
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
public class Program {
public static void Main() {
Console.WriteLine("AES CBC 256 string encryption with PBKDF2 SHA1 key derivation");
// credentials
string plaintext = "The quick brown fox jumps over the lazy dog";
string password = "myPassword";
string saltString = "salt_sixteen1234";
var iterationsCount = 100;
string ivString = "sixteen_value_12";
Encoding enc = Encoding.UTF8;
byte[] saltBytes = enc.GetBytes(saltString);
byte[] iv = enc.GetBytes(ivString);
byte[] key;
try {
// pbkdf2 sha1 key derivation
using (var pbkdf2 = new Rfc2898DeriveBytes(
password,
saltBytes,
iterationsCount,
HashAlgorithmName.SHA1))
{
key = pbkdf2.GetBytes(32);
}
Console.WriteLine("plaintext: {0}", plaintext);
string ciphertext = encrypt(key, iv, plaintext);
Console.WriteLine("ciphertext: {0}", ciphertext);
}
catch(Exception e) {
Console.WriteLine("Error: {0}", e.Message);
}
}
static string encrypt(byte[] key, byte[] IV, string data) {
byte[] encrypted;
using(Aes aesAlg = Aes.Create()) {
aesAlg.Key = key;
aesAlg.IV = IV;
aesAlg.Mode = CipherMode.CBC;
var encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);
// create the streams used for encryption.
using(var msEncrypt = new MemoryStream()) {
using(var csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write)) {
using(var swEncrypt = new StreamWriter(csEncrypt)) {
//Write all data to the stream.
swEncrypt.Write(data);
}
encrypted = msEncrypt.ToArray();
}
}
}
return Convert.ToBase64String(encrypted);
}
}
Java-code:
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
import java.nio.charset.StandardCharsets;
import java.util.Base64;
public class Main {
public static void main(String[] args) throws Exception {
System.out.println("C# AES encrypt to java 8 decrypt");
String plaintext = "The quick brown fox jumps over the lazy dog";
String password = "myPassword";
String iv = "sixteen_value_12";
String salt = "salt_sixteen1234";
int iterations = 100;
int keySize = 256;
System.out.println("plaintext: " + plaintext);
String ciphertext = AES_encrypt(plaintext, password, salt, iv, iterations, keySize);
System.out.println("ciphertext: " + ciphertext);
String decryptedtext = AES_decrypt(ciphertext, password, salt, iv, iterations, keySize);
System.out.println("decryptedtext: " + decryptedtext);
System.out.println("\ndecryption of a ciphertext from C#");
String ciphertextFromCsharp = "5HMLSQKEgG+RADgPmf5Eyw0F/GG9sXFuWiHeuZxgpmJP+UoH4MZlvnQDrgnofQy4";
System.out.println("ciphertextFromCsharp: " + ciphertextFromCsharp);
String decryptedtextFromCsharp = AES_decrypt(ciphertextFromCsharp, password, salt, iv, iterations, keySize);
System.out.println("decryptedtextFromCsharp: " + decryptedtextFromCsharp);
}
private static Cipher generateCipher(int mode, String password, String salt, String iv, Integer iterations, Integer keySize) throws Exception {
byte[] saltBytes = salt.getBytes("UTF-8"); byte[]ivBytes = iv.getBytes("UTF-8");
// Derive the key
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
PBEKeySpec spec = new PBEKeySpec(password.toCharArray(), saltBytes, iterations, keySize);
SecretKey secretKey = factory.generateSecret(spec);
SecretKeySpec secret = new SecretKeySpec(secretKey.getEncoded(), "AES");
//encrypt the message
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); cipher.init(mode, secret, new IvParameterSpec(ivBytes));
return cipher;
}
public static String AES_encrypt(String plainText, String password, String salt, String iv, Integer iterations, Integer keySize) throws Exception {
Cipher cipher = generateCipher(Cipher.ENCRYPT_MODE, password, salt, iv, iterations, keySize);
byte[] encryptedTextBytes = cipher.doFinal(plainText.getBytes("UTF-8"));
Base64.Encoder encoder = Base64.getEncoder();
return encoder.encodeToString(encryptedTextBytes);
}
public static String AES_decrypt(String cipherText, String password, String salt, String iv, Integer iterations, Integer keySize) throws Exception {
Base64.Decoder decoder = Base64.getDecoder();
Cipher cipher = generateCipher(Cipher.DECRYPT_MODE, password, salt, iv, iterations, keySize);
return new String(cipher.doFinal(decoder.decode(cipherText)), StandardCharsets.UTF_8);
}
}
Related
So, we are using AES GCM encryption & decryption in nodejs as follows,
We need to use this in Java. So one can encrypt in Java and decrypt in nodeJs and vice versa.
here is encrypt decrypt function in node
const encrypt = (text, masterkey) => {
// random initialization vector
const iv = crypto.randomBytes(16);
// random salt
const salt = crypto.randomBytes(64);
// derive encryption key: 32 byte key length
// in assumption the masterkey is a cryptographic and NOT a password there is no need for
// a large number of iterations. It may can replaced by HKDF
// the value of 2145 is randomly chosen!
const key = crypto.pbkdf2Sync(masterkey, salt, 2145, 32, 'sha512');
// AES 256 GCM Mode
const cipher = crypto.createCipheriv('aes-256-gcm', key, iv);
// encrypt the given text
const encrypted = Buffer.concat([
cipher.update(text, 'utf8'),
cipher.final()
]);
// extract the auth tag
const tag = cipher.getAuthTag();
// generate output
return Buffer.concat([salt, iv, tag, encrypted]).toString('base64');
};
const decrypt = (encdata, masterkey) => {
// base64 decoding
const bData = Buffer.from(encdata, 'base64');
// convert data to buffers
const salt = bData.slice(0, 64);
const iv = bData.slice(64, 80);
const tag = bData.slice(80, 96);
const text = bData.slice(96);
// derive key using; 32 byte key length
const key = crypto.pbkdf2Sync(masterkey, salt, 2145, 32, 'sha512');
// AES 256 GCM Mode
const decipher = crypto.createDecipheriv('aes-256-gcm', key, iv);
decipher.setAuthTag(tag);
// encrypt the given text
return decipher.update(text, 'binary', 'utf8') + decipher.final('utf8');
};
Here's What I have done in Java, but getting input too short exception.
I have also tried to mock above nodeJs encrypt function, but it seems to be not working.
I have got initialization vector(IV), salt, key as same as nodejs (in java it is signed 128 bits)
public static String decrypt(String encData, String masterKey)
{
var cipherText = Base64.getDecoder().decode(encData.getBytes(StandardCharsets.UTF_8));
var salt = Arrays.copyOfRange(cipherText, 0, 64);
var iv = Arrays.copyOfRange(cipherText, 64, 80);
var tag = Arrays.copyOfRange(cipherText, 80, 96);
var ciphertext = Arrays.copyOfRange(cipherText, 96, cipherText.length);
var key = getKeyFromPassword(masterKey, salt);
//GCM_TAG_LENGTH = 16
return helper("AES/GCM/NoPadding", ciphertext, tag, key, new GCMParameterSpec(GCM_TAG_LENGTH * 8, iv));
}
public static SecretKey getKeyFromPassword(String masterKey, byte[] salt) {
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA512");
KeySpec spec = new PBEKeySpec(masterKey.toCharArray(), salt, 2145, 256);
SecretKey secret = new SecretKeySpec(factory.generateSecret(spec)
.getEncoded(), "AES");
return secret;
}
public static String helper(String algorithm, byte[] cipherText, SecretKey key,
GCMParameterSpec gcmParameterSpec){
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.DECRYPT_MODE, key, gcmParameterSpec);
cipher.update(cipherText);
byte[] plainText = cipher.doFinal(tag);
return new String(plainText, StandardCharsets.UTF_8);
}
UPDATE: above code works for decryption in java
But now need to encrypt in java
here's what i am doing, but getting Tag mismatch! exception while decryption.I also change the order of tag & cipherText but still same error occured.
public static String encrypt(String text, String masterKey)
{
var iv = generateIv(16);
var salt = generateIv(64);
var key = getKeyFromPassword(masterKey, salt);
var cipher = helper1("AES/GCM/NoPadding", text, key, new GCMParameterSpec(GCM_TAG_LENGTH * 8, iv));
var outputStream = new ByteArrayOutputStream();
var tag = Arrays.copyOfRange(cipher, 0, 16);
var ciphertext = Arrays.copyOfRange(cipher, 16, cipher.length);
outputStream.write(salt);
outputStream.write(iv);
outputStream.write(tag);
outputStream.write(ciphertext);
return Base64.getEncoder().encodeToString(outputStream.toByteArray());
}
public static byte[] generateIv(int N) {
byte[] iv = new byte[N];
new SecureRandom().nextBytes(iv);
return iv;
}
public static byte[] helper1(String algorithm, String input, SecretKey key,
GCMParameterSpec gcmParameterSpec){
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.ENCRYPT_MODE, key, gcmParameterSpec);
return cipher.doFinal(input.getBytes());
}
public static SecretKey getKeyFromPassword(String masterKey, byte[] salt) {
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA512");
KeySpec spec = new PBEKeySpec(masterKey.toCharArray(), salt, 2145, 256);
SecretKey secret = new SecretKeySpec(factory.generateSecret(spec)
.getEncoded(), "AES");
return secret;
}
So, I am putting Java version of encrypt & decrypt functions here
public static byte[] generateIv(int N) {
byte[] iv = new byte[N];
new SecureRandom().nextBytes(iv);
return iv;
}
public static SecretKey getKeyFromPassword(String masterKey, byte[] salt) {
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA512");
KeySpec spec = new PBEKeySpec(masterKey.toCharArray(), salt, 2145, 256);
SecretKey secret = new SecretKeySpec(factory.generateSecret(spec)
.getEncoded(), "AES");
return secret;
}
public static byte[] encryptHelper(String algorithm, String input, SecretKey key,
GCMParameterSpec gcmParameterSpec){
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.ENCRYPT_MODE, key, gcmParameterSpec);
return cipher.doFinal(input.getBytes());
}
#SneakyThrows
public static String decryptHelper(String algorithm, byte[] cipherText, byte[] tag,SecretKey key,
GCMParameterSpec gcmParameterSpec){
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.DECRYPT_MODE, key, gcmParameterSpec);
cipher.update(cipherText);
byte[] plainText = cipher.doFinal(tag);
return new String(plainText, StandardCharsets.UTF_8);
}
public static String encrypt(String text, String masterKey)
{
var iv = generateIv(16);
var salt = generateIv(64);
var key = getKeyFromPassword(masterKey, salt);
var cipher = encryptHelper("AES/GCM/NoPadding", text, key, new GCMParameterSpec(GCM_TAG_LENGTH * 8, iv));
var outputStream = new ByteArrayOutputStream();
var ciphertext = Arrays.copyOfRange(cipher, 0, text.length());
var tag = Arrays.copyOfRange(cipher, text.length(), cipher.length);
outputStream.write(salt);
outputStream.write(iv);
outputStream.write(tag);
outputStream.write(ciphertext);
return Base64.getEncoder().encodeToString(outputStream.toByteArray());
}
public static String decrypt(String encData, String masterKey)
{
var cipherText = Base64.getDecoder().decode(encData.getBytes(StandardCharsets.UTF_8));
var salt = Arrays.copyOfRange(cipherText, 0, 64);
var iv = Arrays.copyOfRange(cipherText, 64, 80);
var tag = Arrays.copyOfRange(cipherText, 80, 96);
var ciphertext = Arrays.copyOfRange(cipherText, 96, cipherText.length);
var key = getKeyFromPassword(masterKey, salt);
return decryptHelper("AES/GCM/NoPadding", ciphertext, tag, key, new GCMParameterSpec(GCM_TAG_LENGTH * 8, iv));
}
I used the following to encrypt a string using a password
static String algorithm = "PBEWITHSHA256AND128BITAES-CBC-BC";
static byte[] salt = "b9v4n38s".getBytes(StandardCharsets.UTF_8);
static int derivedKeyLength = 128;
static int iterations = 20000;
public static byte[] encrypt(String plainText, String password) throws NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException, BadPaddingException, InvalidKeySpecException, NoSuchAlgorithmException {
Security.addProvider(new BouncyCastleProvider());
KeySpec spec = new PBEKeySpec(password.toCharArray(), salt, iterations, derivedKeyLength);
SecretKeyFactory f = SecretKeyFactory.getInstance(algorithm);
SecretKey key = f.generateSecret(spec);
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] text = plainText.getBytes(StandardCharsets.UTF_8);
byte[] encrypted = cipher.doFinal(text);
return encrypted;
}
The result of this is base64 encoded and sent as arg[0] to .Net (arg[1] is the same password). Now I'm trying to decrypt that string in .Net with this code
private static string Decrypt(string[] args)
{
int derivedKeyLength = 128;
int iterations = 20000;
string algorithm = "PBEWITHSHA256AND128BITAES-CBC-BC";
byte[] salt = Encoding.UTF8.GetBytes("b9v4n38s");
PbeParametersGenerator pGen = new Pkcs12ParametersGenerator(new Sha256Digest());
pGen.Init(Encoding.UTF8.GetBytes(args[1]), salt, iterations);
ICipherParameters par = pGen.GenerateDerivedParameters("AES256", derivedKeyLength);
IBufferedCipher c = CipherUtilities.GetCipher(algorithm);
c.Init(false, par);
var input = Convert.FromBase64String(args[0]);
byte[] enc = c.DoFinal(input);
var decoded = Encoding.UTF8.GetString(enc);
return decoded;
}
Unfortunately it fails on DoFinal with message Org.BouncyCastle.Crypto.InvalidCipherTextException: 'pad block corrupted'
SecretKeyFactory.getInstance(algorithm) uses the same algorithm string as Cipher.getInstance(algorithm) in java but if I try pGen.GenerateDerivedParameters(algorithm, derivedKeyLength); in .Net it throws Org.BouncyCastle.Security.SecurityUtilityException: 'Algorithm PBEWITHSHA256AND128BITAES-CBC-BC not recognised.'
I'm not set on this algorithm, just looking for a way to encrypt a string in Java and decrypt it in .Net.
A possible C#/BC code to decrypt a ciphertext generated with the posted Java code is:
using System;
using System.Text;
using Org.BouncyCastle.Asn1;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Security;
...
private static string algorithm = "PBEWITHSHA256AND128BITAES-CBC-BC";
private static byte[] salt = Encoding.UTF8.GetBytes("b9v4n38s");
private static int iterations = 20000;
public static string Decrypt(string ciphertextB64, string password)
{
IBufferedCipher cipher = CipherUtilities.GetCipher(algorithm);
Asn1Encodable algParams = PbeUtilities.GenerateAlgorithmParameters(algorithm, salt, iterations);
ICipherParameters cipherParams = PbeUtilities.GenerateCipherParameters(algorithm, password.ToCharArray(), algParams);
cipher.Init(false, cipherParams);
byte[] cipherBytes = Convert.FromBase64String(ciphertextB64);
byte[] decrypted = cipher.DoFinal(cipherBytes);
return Encoding.UTF8.GetString(decrypted);
}
Test:
string decrypted = Decrypt("mBy4YwAvUpvoSJhzBnpOCJw2kCayvdYfLJ/12x0BgUKh5m5bvArSheMMs2U5rYyE", "MyPassword");
Console.WriteLine(decrypted); // The quick brown fox jumps over the lazy dog
where the ciphertext was generated with the Java code using the password MyPassword.
Please note that a static salt is generally insecure (except for testing purposes of course).
I am trying to understand how a derived key is obtained by using PBKDF2, with SHA256.
I am getting tangled up, and need a clear, easy to understand example.
What I have so far:
I have found https://en.wikipedia.org/wiki/PBKDF2 which has a an example, but with SHA1, with the following values:
PASSWORD plnlrtfpijpuhqylxbgqiiyipieyxvfsavzgxbbcfusqkozwpngsyejqlmjsytrmd UTF8
SALT A009C1A485912C6AE630D3E744240B04 HEX
Hashing function SHA1
Key Size 128
Iterations 1000
I have been using https://gchq.github.io/CyberChef and can get the output 17EB4014C8C461C300E9B61518B9A18B which matches the derived key bytes in the Wikipedia example.
I have been working with https://mkyong.com/java/java-aes-encryption-and-decryption/ which has a method named getAESKeyFromPassword, which is here:
// Password derived AES 256 bits secret key
public static SecretKey getAESKeyFromPassword(char[] password, byte[] salt)
throws NoSuchAlgorithmException, InvalidKeySpecException {
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
// iterationCount = 65536
// keyLength = 256
KeySpec spec = new PBEKeySpec(password, salt, 65536, 256);
SecretKey secret = new SecretKeySpec(factory.generateSecret(spec).getEncoded(), "AES");
return secret;
}
I want to carry out the same "investigation", as I have done with the Wikipedia page, SHA1, and CyberChef, but using SHA256 (replacing the values in the Java code, to match the salt, password, iterations, from the example).
This is where my confusion starts:
If I were to use CyberChef to work on the same values as above, but replace with SHA256:
PASSWORD plnlrtfpijpuhqylxbgqiiyipieyxvfsavzgxbbcfusqkozwpngsyejqlmjsytrmd UTF8
SALT A009C1A485912C6AE630D3E744240B04 HEX
Hashing function SHA256
Key Size 128
Iterations 1000
I would expect the derived key to be the same in CyberChef, as the https://mkyong.com/java/java-aes-encryption-and-decryption/ example.
It's not.
I cannot help but think there is a flaw in my understanding.
Can someone please provide a simple (worked-through) example of PBKDF2 with SHA256, so I can understand what is going on. If the derived key is not meant to be the same (as with the SHA1 example, please explain why).
Is the Java SecretKey:
SecretKey secret = new SecretKeySpec(factory.generateSecret(spec).getEncoded(), "AES");
The same as the derived key?
There seems to be a lack of easy-to-understand examples to follow.
Thanks
Miles.
Thank you all for your input, especially Topaco :)
I am going to answer my question, as I have spent some time working on a MCVE, and have managed to get the same SecretKey as cyberChef.
The secret key value is: 28869b5f31ae29236f164c5cb33e2e3bb46f483867a15f8e7208e1836070f64a
Here is the output from cyberChef:
Here is the Java code, and output from running it:
package crypto;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.nio.charset.StandardCharsets;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.KeySpec;
import java.util.Base64;
public class EncryptDecryptAesGcmPassword {
private static final String ENCRYPT_ALGO = "AES/GCM/NoPadding";
private static final int TAG_LENGTH_BIT = 128; // must be one of {128, 120, 112, 104, 96}
private static final int IV_LENGTH_BYTE = 12;
private static final int SALT_LENGTH_BYTE = 16;
public static final int ITERATION_COUNT = 1000;
public static final int KEY_LENGTH = 256;
private static final Charset UTF_8 = StandardCharsets.UTF_8;
// return a base64 encoded AES encrypted text
public static String encrypt(byte[] salt, byte[] pText, String password) throws Exception {
// GCM recommended 12 bytes iv?
byte[] iv = getRandomNonce(IV_LENGTH_BYTE);
// secret key from password
SecretKey aesKeyFromPassword = getAESKeyFromPassword(password.toCharArray(), salt);
Cipher cipher = Cipher.getInstance(ENCRYPT_ALGO);
// ASE-GCM needs GCMParameterSpec
cipher.init(Cipher.ENCRYPT_MODE, aesKeyFromPassword, new GCMParameterSpec(TAG_LENGTH_BIT, iv));
byte[] cipherText = cipher.doFinal(pText);
// prefix IV and Salt to cipher text
byte[] cipherTextWithIvSalt = ByteBuffer.allocate(iv.length + salt.length + cipherText.length)
.put(iv)
.put(salt)
.put(cipherText)
.array();
// string representation, base64, send this string to other for decryption.
return Base64.getEncoder().encodeToString(cipherTextWithIvSalt);
}
// we need the same password, salt and iv to decrypt it
private static String decrypt(String cText, String password) throws Exception {
byte[] decode = Base64.getDecoder().decode(cText.getBytes(UTF_8));
// get back the iv and salt from the cipher text
ByteBuffer bb = ByteBuffer.wrap(decode);
byte[] iv = new byte[IV_LENGTH_BYTE];
bb.get(iv);
byte[] salt = new byte[SALT_LENGTH_BYTE];
bb.get(salt);
byte[] cipherText = new byte[bb.remaining()];
bb.get(cipherText);
// get back the aes key from the same password and salt
SecretKey aesKeyFromPassword = getAESKeyFromPassword(password.toCharArray(), salt);
Cipher cipher = Cipher.getInstance(ENCRYPT_ALGO);
cipher.init(Cipher.DECRYPT_MODE, aesKeyFromPassword, new GCMParameterSpec(TAG_LENGTH_BIT, iv));
byte[] plainText = cipher.doFinal(cipherText);
return new String(plainText, UTF_8);
}
public static byte hexToByte(String hexString) {
int firstDigit = toDigit(hexString.charAt(0));
int secondDigit = toDigit(hexString.charAt(1));
return (byte) ((firstDigit << 4) + secondDigit);
}
public static byte[] decodeHexString(String hexString) {
if (hexString.length() % 2 == 1) {
throw new IllegalArgumentException(
"Invalid hexadecimal String supplied.");
}
byte[] bytes = new byte[hexString.length() / 2];
for (int i = 0; i < hexString.length(); i += 2) {
bytes[i / 2] = hexToByte(hexString.substring(i, i + 2));
}
return bytes;
}
private static int toDigit(char hexChar) {
int digit = Character.digit(hexChar, 16);
if (digit == -1) {
throw new IllegalArgumentException(
"Invalid Hexadecimal Character: "+ hexChar);
}
return digit;
}
// Random byte[] with length numBytes
public static byte[] getRandomNonce(int numBytes) {
byte[] nonce = new byte[numBytes];
new SecureRandom().nextBytes(nonce);
return nonce;
}
// Password derived AES 256 bits secret key
public static SecretKey getAESKeyFromPassword(char[] password, byte[] salt)
throws NoSuchAlgorithmException, InvalidKeySpecException {
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
// iterationCount = 1000
// keyLength = 256
KeySpec spec = new PBEKeySpec(password, salt, ITERATION_COUNT,
KEY_LENGTH);
SecretKey secret = new SecretKeySpec(factory.generateSecret(spec).getEncoded(), "AES");
String encodedKey = hex(secret.getEncoded());
// print SecretKey as hex
System.out.println("SecretKey: " + encodedKey);
return secret;
}
// hex representation
public static String hex(byte[] bytes) {
StringBuilder result = new StringBuilder();
for (byte b : bytes) {
result.append(String.format("%02x", b));
}
return result.toString();
}
public static void main(String[] args) throws Exception {
String OUTPUT_FORMAT = "%-30s:%s";
String PASSWORD = "plnlrtfpijpuhqylxbgqiiyipieyxvfsavzgxbbcfusqkozwpngsyejqlmjsytrmd";
// plain text
String pText = "AES-GSM Password-Bases encryption!";
// convert hex string to byte[]
byte[] salt = decodeHexString("A009C1A485912C6AE630D3E744240B04");
String encryptedTextBase64 = EncryptDecryptAesGcmPassword.encrypt(salt, pText.getBytes(UTF_8), PASSWORD);
System.out.println("\n------ AES GCM Password-based Encryption ------");
System.out.println(String.format(OUTPUT_FORMAT, "Input (plain text)", pText));
System.out.println(String.format(OUTPUT_FORMAT, "Encrypted (base64) ", encryptedTextBase64));
System.out.println("\n------ AES GCM Password-based Decryption ------");
System.out.println(String.format(OUTPUT_FORMAT, "Input (base64)", encryptedTextBase64));
String decryptedText = EncryptDecryptAesGcmPassword.decrypt(encryptedTextBase64, PASSWORD);
System.out.println(String.format(OUTPUT_FORMAT, "Decrypted (plain text)", decryptedText));
}
}
Running this code, produces the following:
SecretKey: 28869b5f31ae29236f164c5cb33e2e3bb46f483867a15f8e7208e1836070f64a
------ AES GCM Password-based Encryption ------
Input (plain text) :AES-GSM Password-Bases encryption!
Encrypted (base64) :/PuTLBTKVWgJB2iMoAnBpIWRLGrmMNPnRCQLBABOkwNeY8BrrdtoRNVFqZ+xmUjvF2PET6Ne2+PAp34QLCUFjQodTMdmzaNAfzcLWOf4
------ AES GCM Password-based Decryption ------
Input (base64) :/PuTLBTKVWgJB2iMoAnBpIWRLGrmMNPnRCQLBABOkwNeY8BrrdtoRNVFqZ+xmUjvF2PET6Ne2+PAp34QLCUFjQodTMdmzaNAfzcLWOf4
SecretKey: 28869b5f31ae29236f164c5cb33e2e3bb46f483867a15f8e7208e1836070f64a
Decrypted (plain text) :AES-GSM Password-Bases encryption!
Thanks
Miles.
What's wrong with the following example?
The problem is that the first part of the decrypted string is nonsense. However, the rest is fine, I get...
Result: `£eB6O�geS��i are you? Have a nice day.
#Test
public void testEncrypt() {
try {
String s = "Hello there. How are you? Have a nice day.";
// Generate key
KeyGenerator kgen = KeyGenerator.getInstance("AES");
kgen.init(128);
SecretKey aesKey = kgen.generateKey();
// Encrypt cipher
Cipher encryptCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
encryptCipher.init(Cipher.ENCRYPT_MODE, aesKey);
// Encrypt
ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
CipherOutputStream cipherOutputStream = new CipherOutputStream(outputStream, encryptCipher);
cipherOutputStream.write(s.getBytes());
cipherOutputStream.flush();
cipherOutputStream.close();
byte[] encryptedBytes = outputStream.toByteArray();
// Decrypt cipher
Cipher decryptCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
IvParameterSpec ivParameterSpec = new IvParameterSpec(aesKey.getEncoded());
decryptCipher.init(Cipher.DECRYPT_MODE, aesKey, ivParameterSpec);
// Decrypt
outputStream = new ByteArrayOutputStream();
ByteArrayInputStream inStream = new ByteArrayInputStream(encryptedBytes);
CipherInputStream cipherInputStream = new CipherInputStream(inStream, decryptCipher);
byte[] buf = new byte[1024];
int bytesRead;
while ((bytesRead = cipherInputStream.read(buf)) >= 0) {
outputStream.write(buf, 0, bytesRead);
}
System.out.println("Result: " + new String(outputStream.toByteArray()));
}
catch (Exception ex) {
ex.printStackTrace();
}
}
Lot of people including myself face lot of issues in making this work due to missing some information like, forgetting to convert to Base64, initialization vectors, character set, etc. So I thought of making a fully functional code.
Hope this will be useful to you all:
To compile you need additional Apache Commons Codec jar, which is available here:
http://commons.apache.org/proper/commons-codec/download_codec.cgi
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import org.apache.commons.codec.binary.Base64;
public class Encryptor {
public static String encrypt(String key, String initVector, String value) {
try {
IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));
SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
byte[] encrypted = cipher.doFinal(value.getBytes());
System.out.println("encrypted string: "
+ Base64.encodeBase64String(encrypted));
return Base64.encodeBase64String(encrypted);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static String decrypt(String key, String initVector, String encrypted) {
try {
IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));
SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
byte[] original = cipher.doFinal(Base64.decodeBase64(encrypted));
return new String(original);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static void main(String[] args) {
String key = "Bar12345Bar12345"; // 128 bit key
String initVector = "RandomInitVector"; // 16 bytes IV
System.out.println(decrypt(key, initVector,
encrypt(key, initVector, "Hello World")));
}
}
In this answer I choose to approach the "Simple Java AES encrypt/decrypt example" main theme and not the specific debugging question because I think this will profit most readers.
This is a simple summary of my blog post about AES encryption in Java so I recommend reading through it before implementing anything. I will however still provide a simple example to use and give some pointers what to watch out for.
In this example I will choose to use authenticated encryption with Galois/Counter Mode or GCM mode. The reason is that in most case you want integrity and authenticity in combination with confidentiality (read more in the blog).
AES-GCM Encryption/Decryption Tutorial
Here are the steps required to encrypt/decrypt with AES-GCM with the Java Cryptography Architecture (JCA). Do not mix with other examples, as subtle differences may make your code utterly insecure.
1. Create Key
As it depends on your use-case, I will assume the simplest case: a random secret key.
SecureRandom secureRandom = new SecureRandom();
byte[] key = new byte[16];
secureRandom.nextBytes(key);
SecretKey secretKey = SecretKeySpec(key, "AES");
Important:
always use a strong pseudorandom number generator like SecureRandom
use 16 byte / 128 bit long key (or more - but more is seldom needed)
if you want a key derived from a user password, look into a password hash function (or KDF) with stretching property like PBKDF2 or bcrypt
if you want a key derived from other sources, use a proper key derivation function (KDF) like HKDF (Java implementation here). Do not use simple cryptographic hashes for that (like SHA-256).
2. Create the Initialization Vector
An initialization vector (IV) is used so that the same secret key will create different cipher texts.
byte[] iv = new byte[12]; //NEVER REUSE THIS IV WITH SAME KEY
secureRandom.nextBytes(iv);
Important:
never reuse the same IV with the same key (very important in GCM/CTR mode)
the IV must be unique (ie. use random IV or a counter)
the IV is not required to be secret
always use a strong pseudorandom number generator like SecureRandom
12 byte IV is the correct choice for AES-GCM mode
3. Encrypt with IV and Key
final Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
GCMParameterSpec parameterSpec = new GCMParameterSpec(128, iv); //128 bit auth tag length
cipher.init(Cipher.ENCRYPT_MODE, secretKey, parameterSpec);
byte[] cipherText = cipher.doFinal(plainText);
Important:
use 16 byte / 128 bit authentication tag (used to verify integrity/authenticity)
the authentication tag will be automatically appended to the cipher text (in the JCA implementation)
since GCM behaves like a stream cipher, no padding is required
use CipherInputStream when encrypting large chunks of data
want additional (non-secret) data checked if it was changed? You may want to use associated data with cipher.updateAAD(associatedData); More here.
3. Serialize to Single Message
Just append IV and ciphertext. As stated above, the IV doesn't need to be secret.
ByteBuffer byteBuffer = ByteBuffer.allocate(iv.length + cipherText.length);
byteBuffer.put(iv);
byteBuffer.put(cipherText);
byte[] cipherMessage = byteBuffer.array();
Optionally encode with Base64 if you need a string representation. Either use Android's or Java 8's built-in implementation (do not use Apache Commons Codec - it's an awful implementation). Encoding is used to "convert" byte arrays to string representation to make it ASCII safe e.g.:
String base64CipherMessage = Base64.getEncoder().encodeToString(cipherMessage);
4. Prepare Decryption: Deserialize
If you have encoded the message, first decode it to byte array:
byte[] cipherMessage = Base64.getDecoder().decode(base64CipherMessage)
Important:
be careful to validate input parameters, so to avoid denial of service attacks by allocating too much memory.
5. Decrypt
Initialize the cipher and set the same parameters as with the encryption:
final Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
//use first 12 bytes for iv
AlgorithmParameterSpec gcmIv = new GCMParameterSpec(128, cipherMessage, 0, 12);
cipher.init(Cipher.DECRYPT_MODE, secretKey, gcmIv);
//use everything from 12 bytes on as ciphertext
byte[] plainText = cipher.doFinal(cipherMessage, 12, cipherMessage.length - 12);
Important:
don't forget to add associated data with cipher.updateAAD(associatedData); if you added it during encryption.
A working code snippet can be found in this gist.
Note that most recent Android (SDK 21+) and Java (7+) implementations should have AES-GCM. Older versions may lack it. I still choose this mode, since it is easier to implement in addition to being more efficient compared to similar mode of Encrypt-then-Mac (with e.g. AES-CBC + HMAC). See this article on how to implement AES-CBC with HMAC.
Here a solution without Apache Commons Codec's Base64:
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
public class AdvancedEncryptionStandard
{
private byte[] key;
private static final String ALGORITHM = "AES";
public AdvancedEncryptionStandard(byte[] key)
{
this.key = key;
}
/**
* Encrypts the given plain text
*
* #param plainText The plain text to encrypt
*/
public byte[] encrypt(byte[] plainText) throws Exception
{
SecretKeySpec secretKey = new SecretKeySpec(key, ALGORITHM);
Cipher cipher = Cipher.getInstance(ALGORITHM);
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
return cipher.doFinal(plainText);
}
/**
* Decrypts the given byte array
*
* #param cipherText The data to decrypt
*/
public byte[] decrypt(byte[] cipherText) throws Exception
{
SecretKeySpec secretKey = new SecretKeySpec(key, ALGORITHM);
Cipher cipher = Cipher.getInstance(ALGORITHM);
cipher.init(Cipher.DECRYPT_MODE, secretKey);
return cipher.doFinal(cipherText);
}
}
Usage example:
byte[] encryptionKey = "MZygpewJsCpRrfOr".getBytes(StandardCharsets.UTF_8);
byte[] plainText = "Hello world!".getBytes(StandardCharsets.UTF_8);
AdvancedEncryptionStandard advancedEncryptionStandard = new AdvancedEncryptionStandard(
encryptionKey);
byte[] cipherText = advancedEncryptionStandard.encrypt(plainText);
byte[] decryptedCipherText = advancedEncryptionStandard.decrypt(cipherText);
System.out.println(new String(plainText));
System.out.println(new String(cipherText));
System.out.println(new String(decryptedCipherText));
Prints:
Hello world!
դ;��LA+�ߙb*
Hello world!
Looks to me like you are not dealing properly with your Initialization Vector (IV).
It's been a long time since I last read about AES, IVs and block chaining, but your line
IvParameterSpec ivParameterSpec = new IvParameterSpec(aesKey.getEncoded());
does not seem to be OK. In the case of AES, you can think of the initialization vector as the "initial state" of a cipher instance, and this state is a bit of information that you can not get from your key but from the actual computation of the encrypting cipher. (One could argue that if the IV could be extracted from the key, then it would be of no use, as the key is already given to the cipher instance during its init phase).
Therefore, you should get the IV as a byte[] from the cipher instance at the end of your encryption
cipherOutputStream.close();
byte[] iv = encryptCipher.getIV();
and you should initialize your Cipher in DECRYPT_MODE with this byte[] :
IvParameterSpec ivParameterSpec = new IvParameterSpec(iv);
Then, your decryption should be OK.
Hope this helps.
The IV that your using for decryption is incorrect. Replace this code
//Decrypt cipher
Cipher decryptCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
IvParameterSpec ivParameterSpec = new IvParameterSpec(aesKey.getEncoded());
decryptCipher.init(Cipher.DECRYPT_MODE, aesKey, ivParameterSpec);
With this code
//Decrypt cipher
Cipher decryptCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
IvParameterSpec ivParameterSpec = new IvParameterSpec(encryptCipher.getIV());
decryptCipher.init(Cipher.DECRYPT_MODE, aesKey, ivParameterSpec);
And that should solve your problem.
Below includes an example of a simple AES class in Java. I do not recommend using this class in production environments, as it may not account for all of the specific needs of your application.
import java.nio.charset.StandardCharsets;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.util.Base64;
public class AES
{
public static byte[] encrypt(final byte[] keyBytes, final byte[] ivBytes, final byte[] messageBytes) throws InvalidKeyException, InvalidAlgorithmParameterException
{
return AES.transform(Cipher.ENCRYPT_MODE, keyBytes, ivBytes, messageBytes);
}
public static byte[] decrypt(final byte[] keyBytes, final byte[] ivBytes, final byte[] messageBytes) throws InvalidKeyException, InvalidAlgorithmParameterException
{
return AES.transform(Cipher.DECRYPT_MODE, keyBytes, ivBytes, messageBytes);
}
private static byte[] transform(final int mode, final byte[] keyBytes, final byte[] ivBytes, final byte[] messageBytes) throws InvalidKeyException, InvalidAlgorithmParameterException
{
final SecretKeySpec keySpec = new SecretKeySpec(keyBytes, "AES");
final IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);
byte[] transformedBytes = null;
try
{
final Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding");
cipher.init(mode, keySpec, ivSpec);
transformedBytes = cipher.doFinal(messageBytes);
}
catch (NoSuchAlgorithmException | NoSuchPaddingException | IllegalBlockSizeException | BadPaddingException e)
{
e.printStackTrace();
}
return transformedBytes;
}
public static void main(final String[] args) throws InvalidKeyException, InvalidAlgorithmParameterException
{
//Retrieved from a protected local file.
//Do not hard-code and do not version control.
final String base64Key = "ABEiM0RVZneImaq7zN3u/w==";
//Retrieved from a protected database.
//Do not hard-code and do not version control.
final String shadowEntry = "AAECAwQFBgcICQoLDA0ODw==:ZtrkahwcMzTu7e/WuJ3AZmF09DE=";
//Extract the iv and the ciphertext from the shadow entry.
final String[] shadowData = shadowEntry.split(":");
final String base64Iv = shadowData[0];
final String base64Ciphertext = shadowData[1];
//Convert to raw bytes.
final byte[] keyBytes = Base64.getDecoder().decode(base64Key);
final byte[] ivBytes = Base64.getDecoder().decode(base64Iv);
final byte[] encryptedBytes = Base64.getDecoder().decode(base64Ciphertext);
//Decrypt data and do something with it.
final byte[] decryptedBytes = AES.decrypt(keyBytes, ivBytes, encryptedBytes);
//Use non-blocking SecureRandom implementation for the new IV.
final SecureRandom secureRandom = new SecureRandom();
//Generate a new IV.
secureRandom.nextBytes(ivBytes);
//At this point instead of printing to the screen,
//one should replace the old shadow entry with the new one.
System.out.println("Old Shadow Entry = " + shadowEntry);
System.out.println("Decrytped Shadow Data = " + new String(decryptedBytes, StandardCharsets.UTF_8));
System.out.println("New Shadow Entry = " + Base64.getEncoder().encodeToString(ivBytes) + ":" + Base64.getEncoder().encodeToString(AES.encrypt(keyBytes, ivBytes, decryptedBytes)));
}
}
Note that AES has nothing to do with encoding, which is why I chose to handle it separately and without the need of any third party libraries.
Online Editor Runnable version:-
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
//import org.apache.commons.codec.binary.Base64;
import java.util.Base64;
public class Encryptor {
public static String encrypt(String key, String initVector, String value) {
try {
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));
SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
byte[] encrypted = cipher.doFinal(value.getBytes());
//System.out.println("encrypted string: "
// + Base64.encodeBase64String(encrypted));
//return Base64.encodeBase64String(encrypted);
String s = new String(Base64.getEncoder().encode(encrypted));
return s;
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static String decrypt(String key, String initVector, String encrypted) {
try {
IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));
SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
byte[] original = cipher.doFinal(Base64.getDecoder().decode(encrypted));
return new String(original);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static void main(String[] args) {
String key = "Bar12345Bar12345"; // 128 bit key
String initVector = "RandomInitVector"; // 16 bytes IV
System.out.println(encrypt(key, initVector, "Hello World"));
System.out.println(decrypt(key, initVector, encrypt(key, initVector, "Hello World")));
}
}
This is an improvement over the accepted answer.
Changes:
(1) Using random IV and prepend it to the encrypted text
(2) Using SHA-256 to generate a key from a passphrase
(3) No dependency on Apache Commons
public static void main(String[] args) throws GeneralSecurityException {
String plaintext = "Hello world";
String passphrase = "My passphrase";
String encrypted = encrypt(passphrase, plaintext);
String decrypted = decrypt(passphrase, encrypted);
System.out.println(encrypted);
System.out.println(decrypted);
}
private static SecretKeySpec getKeySpec(String passphrase) throws NoSuchAlgorithmException {
MessageDigest digest = MessageDigest.getInstance("SHA-256");
return new SecretKeySpec(digest.digest(passphrase.getBytes(UTF_8)), "AES");
}
private static Cipher getCipher() throws NoSuchPaddingException, NoSuchAlgorithmException {
return Cipher.getInstance("AES/CBC/PKCS5PADDING");
}
public static String encrypt(String passphrase, String value) throws GeneralSecurityException {
byte[] initVector = new byte[16];
SecureRandom.getInstanceStrong().nextBytes(initVector);
Cipher cipher = getCipher();
cipher.init(Cipher.ENCRYPT_MODE, getKeySpec(passphrase), new IvParameterSpec(initVector));
byte[] encrypted = cipher.doFinal(value.getBytes());
return DatatypeConverter.printBase64Binary(initVector) +
DatatypeConverter.printBase64Binary(encrypted);
}
public static String decrypt(String passphrase, String encrypted) throws GeneralSecurityException {
byte[] initVector = DatatypeConverter.parseBase64Binary(encrypted.substring(0, 24));
Cipher cipher = getCipher();
cipher.init(Cipher.DECRYPT_MODE, getKeySpec(passphrase), new IvParameterSpec(initVector));
byte[] original = cipher.doFinal(DatatypeConverter.parseBase64Binary(encrypted.substring(24)));
return new String(original);
}
It's often the good idea to rely on standard library provided solution:
private static void stackOverflow15554296()
throws
NoSuchAlgorithmException, NoSuchPaddingException,
InvalidKeyException, IllegalBlockSizeException,
BadPaddingException
{
// prepare key
KeyGenerator keygen = KeyGenerator.getInstance("AES");
SecretKey aesKey = keygen.generateKey();
String aesKeyForFutureUse = Base64.getEncoder().encodeToString(
aesKey.getEncoded()
);
// cipher engine
Cipher aesCipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
// cipher input
aesCipher.init(Cipher.ENCRYPT_MODE, aesKey);
byte[] clearTextBuff = "Text to encode".getBytes();
byte[] cipherTextBuff = aesCipher.doFinal(clearTextBuff);
// recreate key
byte[] aesKeyBuff = Base64.getDecoder().decode(aesKeyForFutureUse);
SecretKey aesDecryptKey = new SecretKeySpec(aesKeyBuff, "AES");
// decipher input
aesCipher.init(Cipher.DECRYPT_MODE, aesDecryptKey);
byte[] decipheredBuff = aesCipher.doFinal(cipherTextBuff);
System.out.println(new String(decipheredBuff));
}
This prints "Text to encode".
Solution is based on Java Cryptography Architecture Reference Guide and https://stackoverflow.com/a/20591539/146745 answer.
Another solution using java.util.Base64 with Spring Boot
Encryptor Class
package com.jmendoza.springboot.crypto.cipher;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
import java.nio.charset.StandardCharsets;
import java.util.Base64;
#Component
public class Encryptor {
#Value("${security.encryptor.key}")
private byte[] key;
#Value("${security.encryptor.algorithm}")
private String algorithm;
public String encrypt(String plainText) throws Exception {
SecretKeySpec secretKey = new SecretKeySpec(key, algorithm);
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
return new String(Base64.getEncoder().encode(cipher.doFinal(plainText.getBytes(StandardCharsets.UTF_8))));
}
public String decrypt(String cipherText) throws Exception {
SecretKeySpec secretKey = new SecretKeySpec(key, algorithm);
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.DECRYPT_MODE, secretKey);
return new String(cipher.doFinal(Base64.getDecoder().decode(cipherText)));
}
}
EncryptorController Class
package com.jmendoza.springboot.crypto.controller;
import com.jmendoza.springboot.crypto.cipher.Encryptor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
#RestController
#RequestMapping("/cipher")
public class EncryptorController {
#Autowired
Encryptor encryptor;
#GetMapping(value = "encrypt/{value}")
public String encrypt(#PathVariable("value") final String value) throws Exception {
return encryptor.encrypt(value);
}
#GetMapping(value = "decrypt/{value}")
public String decrypt(#PathVariable("value") final String value) throws Exception {
return encryptor.decrypt(value);
}
}
application.properties
server.port=8082
security.encryptor.algorithm=AES
security.encryptor.key=M8jFt46dfJMaiJA0
Example
http://localhost:8082/cipher/encrypt/jmendoza
2h41HH8Shzc4BRU3hVDOXA==
http://localhost:8082/cipher/decrypt/2h41HH8Shzc4BRU3hVDOXA==
jmendoza
Optimized version of the accepted answer.
no 3rd party libs
includes IV into the encrypted message (can be public)
password can be of any length
Code:
import java.io.UnsupportedEncodingException;
import java.security.SecureRandom;
import java.util.Base64;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class Encryptor {
public static byte[] getRandomInitialVector() {
try {
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
SecureRandom randomSecureRandom = SecureRandom.getInstance("SHA1PRNG");
byte[] initVector = new byte[cipher.getBlockSize()];
randomSecureRandom.nextBytes(initVector);
return initVector;
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static byte[] passwordTo16BitKey(String password) {
try {
byte[] srcBytes = password.getBytes("UTF-8");
byte[] dstBytes = new byte[16];
if (srcBytes.length == 16) {
return srcBytes;
}
if (srcBytes.length < 16) {
for (int i = 0; i < dstBytes.length; i++) {
dstBytes[i] = (byte) ((srcBytes[i % srcBytes.length]) * (srcBytes[(i + 1) % srcBytes.length]));
}
} else if (srcBytes.length > 16) {
for (int i = 0; i < srcBytes.length; i++) {
dstBytes[i % dstBytes.length] += srcBytes[i];
}
}
return dstBytes;
} catch (UnsupportedEncodingException ex) {
ex.printStackTrace();
}
return null;
}
public static String encrypt(String key, String value) {
return encrypt(passwordTo16BitKey(key), value);
}
public static String encrypt(byte[] key, String value) {
try {
byte[] initVector = Encryptor.getRandomInitialVector();
IvParameterSpec iv = new IvParameterSpec(initVector);
SecretKeySpec skeySpec = new SecretKeySpec(key, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
byte[] encrypted = cipher.doFinal(value.getBytes());
return Base64.getEncoder().encodeToString(encrypted) + " " + Base64.getEncoder().encodeToString(initVector);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static String decrypt(String key, String encrypted) {
return decrypt(passwordTo16BitKey(key), encrypted);
}
public static String decrypt(byte[] key, String encrypted) {
try {
String[] encryptedParts = encrypted.split(" ");
byte[] initVector = Base64.getDecoder().decode(encryptedParts[1]);
if (initVector.length != 16) {
return null;
}
IvParameterSpec iv = new IvParameterSpec(initVector);
SecretKeySpec skeySpec = new SecretKeySpec(key, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
byte[] original = cipher.doFinal(Base64.getDecoder().decode(encryptedParts[0]));
return new String(original);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
}
Usage:
String key = "Password of any length.";
String encrypted = Encryptor.encrypt(key, "Hello World");
String decrypted = Encryptor.decrypt(key, encrypted);
System.out.println(encrypted);
System.out.println(decrypted);
Example output:
QngBg+Qc5+F8HQsksgfyXg== yDfYiIHTqOOjc0HRNdr1Ng==
Hello World
What's wrong with the following example?
The problem is that the first part of the decrypted string is nonsense. However, the rest is fine, I get...
Result: `£eB6O�geS��i are you? Have a nice day.
#Test
public void testEncrypt() {
try {
String s = "Hello there. How are you? Have a nice day.";
// Generate key
KeyGenerator kgen = KeyGenerator.getInstance("AES");
kgen.init(128);
SecretKey aesKey = kgen.generateKey();
// Encrypt cipher
Cipher encryptCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
encryptCipher.init(Cipher.ENCRYPT_MODE, aesKey);
// Encrypt
ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
CipherOutputStream cipherOutputStream = new CipherOutputStream(outputStream, encryptCipher);
cipherOutputStream.write(s.getBytes());
cipherOutputStream.flush();
cipherOutputStream.close();
byte[] encryptedBytes = outputStream.toByteArray();
// Decrypt cipher
Cipher decryptCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
IvParameterSpec ivParameterSpec = new IvParameterSpec(aesKey.getEncoded());
decryptCipher.init(Cipher.DECRYPT_MODE, aesKey, ivParameterSpec);
// Decrypt
outputStream = new ByteArrayOutputStream();
ByteArrayInputStream inStream = new ByteArrayInputStream(encryptedBytes);
CipherInputStream cipherInputStream = new CipherInputStream(inStream, decryptCipher);
byte[] buf = new byte[1024];
int bytesRead;
while ((bytesRead = cipherInputStream.read(buf)) >= 0) {
outputStream.write(buf, 0, bytesRead);
}
System.out.println("Result: " + new String(outputStream.toByteArray()));
}
catch (Exception ex) {
ex.printStackTrace();
}
}
Lot of people including myself face lot of issues in making this work due to missing some information like, forgetting to convert to Base64, initialization vectors, character set, etc. So I thought of making a fully functional code.
Hope this will be useful to you all:
To compile you need additional Apache Commons Codec jar, which is available here:
http://commons.apache.org/proper/commons-codec/download_codec.cgi
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import org.apache.commons.codec.binary.Base64;
public class Encryptor {
public static String encrypt(String key, String initVector, String value) {
try {
IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));
SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
byte[] encrypted = cipher.doFinal(value.getBytes());
System.out.println("encrypted string: "
+ Base64.encodeBase64String(encrypted));
return Base64.encodeBase64String(encrypted);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static String decrypt(String key, String initVector, String encrypted) {
try {
IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));
SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
byte[] original = cipher.doFinal(Base64.decodeBase64(encrypted));
return new String(original);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static void main(String[] args) {
String key = "Bar12345Bar12345"; // 128 bit key
String initVector = "RandomInitVector"; // 16 bytes IV
System.out.println(decrypt(key, initVector,
encrypt(key, initVector, "Hello World")));
}
}
In this answer I choose to approach the "Simple Java AES encrypt/decrypt example" main theme and not the specific debugging question because I think this will profit most readers.
This is a simple summary of my blog post about AES encryption in Java so I recommend reading through it before implementing anything. I will however still provide a simple example to use and give some pointers what to watch out for.
In this example I will choose to use authenticated encryption with Galois/Counter Mode or GCM mode. The reason is that in most case you want integrity and authenticity in combination with confidentiality (read more in the blog).
AES-GCM Encryption/Decryption Tutorial
Here are the steps required to encrypt/decrypt with AES-GCM with the Java Cryptography Architecture (JCA). Do not mix with other examples, as subtle differences may make your code utterly insecure.
1. Create Key
As it depends on your use-case, I will assume the simplest case: a random secret key.
SecureRandom secureRandom = new SecureRandom();
byte[] key = new byte[16];
secureRandom.nextBytes(key);
SecretKey secretKey = SecretKeySpec(key, "AES");
Important:
always use a strong pseudorandom number generator like SecureRandom
use 16 byte / 128 bit long key (or more - but more is seldom needed)
if you want a key derived from a user password, look into a password hash function (or KDF) with stretching property like PBKDF2 or bcrypt
if you want a key derived from other sources, use a proper key derivation function (KDF) like HKDF (Java implementation here). Do not use simple cryptographic hashes for that (like SHA-256).
2. Create the Initialization Vector
An initialization vector (IV) is used so that the same secret key will create different cipher texts.
byte[] iv = new byte[12]; //NEVER REUSE THIS IV WITH SAME KEY
secureRandom.nextBytes(iv);
Important:
never reuse the same IV with the same key (very important in GCM/CTR mode)
the IV must be unique (ie. use random IV or a counter)
the IV is not required to be secret
always use a strong pseudorandom number generator like SecureRandom
12 byte IV is the correct choice for AES-GCM mode
3. Encrypt with IV and Key
final Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
GCMParameterSpec parameterSpec = new GCMParameterSpec(128, iv); //128 bit auth tag length
cipher.init(Cipher.ENCRYPT_MODE, secretKey, parameterSpec);
byte[] cipherText = cipher.doFinal(plainText);
Important:
use 16 byte / 128 bit authentication tag (used to verify integrity/authenticity)
the authentication tag will be automatically appended to the cipher text (in the JCA implementation)
since GCM behaves like a stream cipher, no padding is required
use CipherInputStream when encrypting large chunks of data
want additional (non-secret) data checked if it was changed? You may want to use associated data with cipher.updateAAD(associatedData); More here.
3. Serialize to Single Message
Just append IV and ciphertext. As stated above, the IV doesn't need to be secret.
ByteBuffer byteBuffer = ByteBuffer.allocate(iv.length + cipherText.length);
byteBuffer.put(iv);
byteBuffer.put(cipherText);
byte[] cipherMessage = byteBuffer.array();
Optionally encode with Base64 if you need a string representation. Either use Android's or Java 8's built-in implementation (do not use Apache Commons Codec - it's an awful implementation). Encoding is used to "convert" byte arrays to string representation to make it ASCII safe e.g.:
String base64CipherMessage = Base64.getEncoder().encodeToString(cipherMessage);
4. Prepare Decryption: Deserialize
If you have encoded the message, first decode it to byte array:
byte[] cipherMessage = Base64.getDecoder().decode(base64CipherMessage)
Important:
be careful to validate input parameters, so to avoid denial of service attacks by allocating too much memory.
5. Decrypt
Initialize the cipher and set the same parameters as with the encryption:
final Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
//use first 12 bytes for iv
AlgorithmParameterSpec gcmIv = new GCMParameterSpec(128, cipherMessage, 0, 12);
cipher.init(Cipher.DECRYPT_MODE, secretKey, gcmIv);
//use everything from 12 bytes on as ciphertext
byte[] plainText = cipher.doFinal(cipherMessage, 12, cipherMessage.length - 12);
Important:
don't forget to add associated data with cipher.updateAAD(associatedData); if you added it during encryption.
A working code snippet can be found in this gist.
Note that most recent Android (SDK 21+) and Java (7+) implementations should have AES-GCM. Older versions may lack it. I still choose this mode, since it is easier to implement in addition to being more efficient compared to similar mode of Encrypt-then-Mac (with e.g. AES-CBC + HMAC). See this article on how to implement AES-CBC with HMAC.
Here a solution without Apache Commons Codec's Base64:
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
public class AdvancedEncryptionStandard
{
private byte[] key;
private static final String ALGORITHM = "AES";
public AdvancedEncryptionStandard(byte[] key)
{
this.key = key;
}
/**
* Encrypts the given plain text
*
* #param plainText The plain text to encrypt
*/
public byte[] encrypt(byte[] plainText) throws Exception
{
SecretKeySpec secretKey = new SecretKeySpec(key, ALGORITHM);
Cipher cipher = Cipher.getInstance(ALGORITHM);
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
return cipher.doFinal(plainText);
}
/**
* Decrypts the given byte array
*
* #param cipherText The data to decrypt
*/
public byte[] decrypt(byte[] cipherText) throws Exception
{
SecretKeySpec secretKey = new SecretKeySpec(key, ALGORITHM);
Cipher cipher = Cipher.getInstance(ALGORITHM);
cipher.init(Cipher.DECRYPT_MODE, secretKey);
return cipher.doFinal(cipherText);
}
}
Usage example:
byte[] encryptionKey = "MZygpewJsCpRrfOr".getBytes(StandardCharsets.UTF_8);
byte[] plainText = "Hello world!".getBytes(StandardCharsets.UTF_8);
AdvancedEncryptionStandard advancedEncryptionStandard = new AdvancedEncryptionStandard(
encryptionKey);
byte[] cipherText = advancedEncryptionStandard.encrypt(plainText);
byte[] decryptedCipherText = advancedEncryptionStandard.decrypt(cipherText);
System.out.println(new String(plainText));
System.out.println(new String(cipherText));
System.out.println(new String(decryptedCipherText));
Prints:
Hello world!
դ;��LA+�ߙb*
Hello world!
Looks to me like you are not dealing properly with your Initialization Vector (IV).
It's been a long time since I last read about AES, IVs and block chaining, but your line
IvParameterSpec ivParameterSpec = new IvParameterSpec(aesKey.getEncoded());
does not seem to be OK. In the case of AES, you can think of the initialization vector as the "initial state" of a cipher instance, and this state is a bit of information that you can not get from your key but from the actual computation of the encrypting cipher. (One could argue that if the IV could be extracted from the key, then it would be of no use, as the key is already given to the cipher instance during its init phase).
Therefore, you should get the IV as a byte[] from the cipher instance at the end of your encryption
cipherOutputStream.close();
byte[] iv = encryptCipher.getIV();
and you should initialize your Cipher in DECRYPT_MODE with this byte[] :
IvParameterSpec ivParameterSpec = new IvParameterSpec(iv);
Then, your decryption should be OK.
Hope this helps.
The IV that your using for decryption is incorrect. Replace this code
//Decrypt cipher
Cipher decryptCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
IvParameterSpec ivParameterSpec = new IvParameterSpec(aesKey.getEncoded());
decryptCipher.init(Cipher.DECRYPT_MODE, aesKey, ivParameterSpec);
With this code
//Decrypt cipher
Cipher decryptCipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
IvParameterSpec ivParameterSpec = new IvParameterSpec(encryptCipher.getIV());
decryptCipher.init(Cipher.DECRYPT_MODE, aesKey, ivParameterSpec);
And that should solve your problem.
Below includes an example of a simple AES class in Java. I do not recommend using this class in production environments, as it may not account for all of the specific needs of your application.
import java.nio.charset.StandardCharsets;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.util.Base64;
public class AES
{
public static byte[] encrypt(final byte[] keyBytes, final byte[] ivBytes, final byte[] messageBytes) throws InvalidKeyException, InvalidAlgorithmParameterException
{
return AES.transform(Cipher.ENCRYPT_MODE, keyBytes, ivBytes, messageBytes);
}
public static byte[] decrypt(final byte[] keyBytes, final byte[] ivBytes, final byte[] messageBytes) throws InvalidKeyException, InvalidAlgorithmParameterException
{
return AES.transform(Cipher.DECRYPT_MODE, keyBytes, ivBytes, messageBytes);
}
private static byte[] transform(final int mode, final byte[] keyBytes, final byte[] ivBytes, final byte[] messageBytes) throws InvalidKeyException, InvalidAlgorithmParameterException
{
final SecretKeySpec keySpec = new SecretKeySpec(keyBytes, "AES");
final IvParameterSpec ivSpec = new IvParameterSpec(ivBytes);
byte[] transformedBytes = null;
try
{
final Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding");
cipher.init(mode, keySpec, ivSpec);
transformedBytes = cipher.doFinal(messageBytes);
}
catch (NoSuchAlgorithmException | NoSuchPaddingException | IllegalBlockSizeException | BadPaddingException e)
{
e.printStackTrace();
}
return transformedBytes;
}
public static void main(final String[] args) throws InvalidKeyException, InvalidAlgorithmParameterException
{
//Retrieved from a protected local file.
//Do not hard-code and do not version control.
final String base64Key = "ABEiM0RVZneImaq7zN3u/w==";
//Retrieved from a protected database.
//Do not hard-code and do not version control.
final String shadowEntry = "AAECAwQFBgcICQoLDA0ODw==:ZtrkahwcMzTu7e/WuJ3AZmF09DE=";
//Extract the iv and the ciphertext from the shadow entry.
final String[] shadowData = shadowEntry.split(":");
final String base64Iv = shadowData[0];
final String base64Ciphertext = shadowData[1];
//Convert to raw bytes.
final byte[] keyBytes = Base64.getDecoder().decode(base64Key);
final byte[] ivBytes = Base64.getDecoder().decode(base64Iv);
final byte[] encryptedBytes = Base64.getDecoder().decode(base64Ciphertext);
//Decrypt data and do something with it.
final byte[] decryptedBytes = AES.decrypt(keyBytes, ivBytes, encryptedBytes);
//Use non-blocking SecureRandom implementation for the new IV.
final SecureRandom secureRandom = new SecureRandom();
//Generate a new IV.
secureRandom.nextBytes(ivBytes);
//At this point instead of printing to the screen,
//one should replace the old shadow entry with the new one.
System.out.println("Old Shadow Entry = " + shadowEntry);
System.out.println("Decrytped Shadow Data = " + new String(decryptedBytes, StandardCharsets.UTF_8));
System.out.println("New Shadow Entry = " + Base64.getEncoder().encodeToString(ivBytes) + ":" + Base64.getEncoder().encodeToString(AES.encrypt(keyBytes, ivBytes, decryptedBytes)));
}
}
Note that AES has nothing to do with encoding, which is why I chose to handle it separately and without the need of any third party libraries.
Online Editor Runnable version:-
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
//import org.apache.commons.codec.binary.Base64;
import java.util.Base64;
public class Encryptor {
public static String encrypt(String key, String initVector, String value) {
try {
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));
SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
byte[] encrypted = cipher.doFinal(value.getBytes());
//System.out.println("encrypted string: "
// + Base64.encodeBase64String(encrypted));
//return Base64.encodeBase64String(encrypted);
String s = new String(Base64.getEncoder().encode(encrypted));
return s;
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static String decrypt(String key, String initVector, String encrypted) {
try {
IvParameterSpec iv = new IvParameterSpec(initVector.getBytes("UTF-8"));
SecretKeySpec skeySpec = new SecretKeySpec(key.getBytes("UTF-8"), "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
byte[] original = cipher.doFinal(Base64.getDecoder().decode(encrypted));
return new String(original);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static void main(String[] args) {
String key = "Bar12345Bar12345"; // 128 bit key
String initVector = "RandomInitVector"; // 16 bytes IV
System.out.println(encrypt(key, initVector, "Hello World"));
System.out.println(decrypt(key, initVector, encrypt(key, initVector, "Hello World")));
}
}
This is an improvement over the accepted answer.
Changes:
(1) Using random IV and prepend it to the encrypted text
(2) Using SHA-256 to generate a key from a passphrase
(3) No dependency on Apache Commons
public static void main(String[] args) throws GeneralSecurityException {
String plaintext = "Hello world";
String passphrase = "My passphrase";
String encrypted = encrypt(passphrase, plaintext);
String decrypted = decrypt(passphrase, encrypted);
System.out.println(encrypted);
System.out.println(decrypted);
}
private static SecretKeySpec getKeySpec(String passphrase) throws NoSuchAlgorithmException {
MessageDigest digest = MessageDigest.getInstance("SHA-256");
return new SecretKeySpec(digest.digest(passphrase.getBytes(UTF_8)), "AES");
}
private static Cipher getCipher() throws NoSuchPaddingException, NoSuchAlgorithmException {
return Cipher.getInstance("AES/CBC/PKCS5PADDING");
}
public static String encrypt(String passphrase, String value) throws GeneralSecurityException {
byte[] initVector = new byte[16];
SecureRandom.getInstanceStrong().nextBytes(initVector);
Cipher cipher = getCipher();
cipher.init(Cipher.ENCRYPT_MODE, getKeySpec(passphrase), new IvParameterSpec(initVector));
byte[] encrypted = cipher.doFinal(value.getBytes());
return DatatypeConverter.printBase64Binary(initVector) +
DatatypeConverter.printBase64Binary(encrypted);
}
public static String decrypt(String passphrase, String encrypted) throws GeneralSecurityException {
byte[] initVector = DatatypeConverter.parseBase64Binary(encrypted.substring(0, 24));
Cipher cipher = getCipher();
cipher.init(Cipher.DECRYPT_MODE, getKeySpec(passphrase), new IvParameterSpec(initVector));
byte[] original = cipher.doFinal(DatatypeConverter.parseBase64Binary(encrypted.substring(24)));
return new String(original);
}
It's often the good idea to rely on standard library provided solution:
private static void stackOverflow15554296()
throws
NoSuchAlgorithmException, NoSuchPaddingException,
InvalidKeyException, IllegalBlockSizeException,
BadPaddingException
{
// prepare key
KeyGenerator keygen = KeyGenerator.getInstance("AES");
SecretKey aesKey = keygen.generateKey();
String aesKeyForFutureUse = Base64.getEncoder().encodeToString(
aesKey.getEncoded()
);
// cipher engine
Cipher aesCipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
// cipher input
aesCipher.init(Cipher.ENCRYPT_MODE, aesKey);
byte[] clearTextBuff = "Text to encode".getBytes();
byte[] cipherTextBuff = aesCipher.doFinal(clearTextBuff);
// recreate key
byte[] aesKeyBuff = Base64.getDecoder().decode(aesKeyForFutureUse);
SecretKey aesDecryptKey = new SecretKeySpec(aesKeyBuff, "AES");
// decipher input
aesCipher.init(Cipher.DECRYPT_MODE, aesDecryptKey);
byte[] decipheredBuff = aesCipher.doFinal(cipherTextBuff);
System.out.println(new String(decipheredBuff));
}
This prints "Text to encode".
Solution is based on Java Cryptography Architecture Reference Guide and https://stackoverflow.com/a/20591539/146745 answer.
Another solution using java.util.Base64 with Spring Boot
Encryptor Class
package com.jmendoza.springboot.crypto.cipher;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
import java.nio.charset.StandardCharsets;
import java.util.Base64;
#Component
public class Encryptor {
#Value("${security.encryptor.key}")
private byte[] key;
#Value("${security.encryptor.algorithm}")
private String algorithm;
public String encrypt(String plainText) throws Exception {
SecretKeySpec secretKey = new SecretKeySpec(key, algorithm);
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
return new String(Base64.getEncoder().encode(cipher.doFinal(plainText.getBytes(StandardCharsets.UTF_8))));
}
public String decrypt(String cipherText) throws Exception {
SecretKeySpec secretKey = new SecretKeySpec(key, algorithm);
Cipher cipher = Cipher.getInstance(algorithm);
cipher.init(Cipher.DECRYPT_MODE, secretKey);
return new String(cipher.doFinal(Base64.getDecoder().decode(cipherText)));
}
}
EncryptorController Class
package com.jmendoza.springboot.crypto.controller;
import com.jmendoza.springboot.crypto.cipher.Encryptor;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
#RestController
#RequestMapping("/cipher")
public class EncryptorController {
#Autowired
Encryptor encryptor;
#GetMapping(value = "encrypt/{value}")
public String encrypt(#PathVariable("value") final String value) throws Exception {
return encryptor.encrypt(value);
}
#GetMapping(value = "decrypt/{value}")
public String decrypt(#PathVariable("value") final String value) throws Exception {
return encryptor.decrypt(value);
}
}
application.properties
server.port=8082
security.encryptor.algorithm=AES
security.encryptor.key=M8jFt46dfJMaiJA0
Example
http://localhost:8082/cipher/encrypt/jmendoza
2h41HH8Shzc4BRU3hVDOXA==
http://localhost:8082/cipher/decrypt/2h41HH8Shzc4BRU3hVDOXA==
jmendoza
Optimized version of the accepted answer.
no 3rd party libs
includes IV into the encrypted message (can be public)
password can be of any length
Code:
import java.io.UnsupportedEncodingException;
import java.security.SecureRandom;
import java.util.Base64;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
public class Encryptor {
public static byte[] getRandomInitialVector() {
try {
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
SecureRandom randomSecureRandom = SecureRandom.getInstance("SHA1PRNG");
byte[] initVector = new byte[cipher.getBlockSize()];
randomSecureRandom.nextBytes(initVector);
return initVector;
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static byte[] passwordTo16BitKey(String password) {
try {
byte[] srcBytes = password.getBytes("UTF-8");
byte[] dstBytes = new byte[16];
if (srcBytes.length == 16) {
return srcBytes;
}
if (srcBytes.length < 16) {
for (int i = 0; i < dstBytes.length; i++) {
dstBytes[i] = (byte) ((srcBytes[i % srcBytes.length]) * (srcBytes[(i + 1) % srcBytes.length]));
}
} else if (srcBytes.length > 16) {
for (int i = 0; i < srcBytes.length; i++) {
dstBytes[i % dstBytes.length] += srcBytes[i];
}
}
return dstBytes;
} catch (UnsupportedEncodingException ex) {
ex.printStackTrace();
}
return null;
}
public static String encrypt(String key, String value) {
return encrypt(passwordTo16BitKey(key), value);
}
public static String encrypt(byte[] key, String value) {
try {
byte[] initVector = Encryptor.getRandomInitialVector();
IvParameterSpec iv = new IvParameterSpec(initVector);
SecretKeySpec skeySpec = new SecretKeySpec(key, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec, iv);
byte[] encrypted = cipher.doFinal(value.getBytes());
return Base64.getEncoder().encodeToString(encrypted) + " " + Base64.getEncoder().encodeToString(initVector);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
public static String decrypt(String key, String encrypted) {
return decrypt(passwordTo16BitKey(key), encrypted);
}
public static String decrypt(byte[] key, String encrypted) {
try {
String[] encryptedParts = encrypted.split(" ");
byte[] initVector = Base64.getDecoder().decode(encryptedParts[1]);
if (initVector.length != 16) {
return null;
}
IvParameterSpec iv = new IvParameterSpec(initVector);
SecretKeySpec skeySpec = new SecretKeySpec(key, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");
cipher.init(Cipher.DECRYPT_MODE, skeySpec, iv);
byte[] original = cipher.doFinal(Base64.getDecoder().decode(encryptedParts[0]));
return new String(original);
} catch (Exception ex) {
ex.printStackTrace();
}
return null;
}
}
Usage:
String key = "Password of any length.";
String encrypted = Encryptor.encrypt(key, "Hello World");
String decrypted = Encryptor.decrypt(key, encrypted);
System.out.println(encrypted);
System.out.println(decrypted);
Example output:
QngBg+Qc5+F8HQsksgfyXg== yDfYiIHTqOOjc0HRNdr1Ng==
Hello World