I have this code:
public class UsbDrive extends HardDrive {
private Date lastUpdate;
private void updateDate() {
lastUpdate = new Date();
}
public synchronized void cutAndPaste(UsbDrive other, int originAddress, int destAddress) {
byte[] data = read(originAddress);
boolean success = other.write(data, destAddress);
if (success) {
erase(originAddress);
updateDate();
} else {
throw new RuntimeException("Write failed!");
}
}
}
class HardDrive {
...
public synchronized byte[] read(int address) {...}
public synchronized boolean write(byte[] data, int address) {...}
public synchronized void erase(int address) {...}
...
I'm trying to simulate a deadlock
public class Main {
private static UsbDrive usb1 = new UsbDrive();
private static UsbDrive usb2 = new UsbDrive();
public static void main(String[] args) throws Exception {
Thread thread1 = new Thread(new ThreadA());
Thread thread2 = new Thread(new ThreadB());
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
static class ThreadA implements Runnable {
#Override
public void run() {
try {
Thread.sleep(5000);
}
catch (Exception e) {
e.printStackTrace();
}
synchronized (usb1) {
usb1.cutAndPaste(usb2, 1, 2);
}
}
}
static class ThreadB implements Runnable {
#Override
public void run() {
synchronized (usb2) {
usb2.cutAndPaste(usb1, 1, 2);
}
}
}
}
However deadlock doesn't happen - why? ThreadA calls method cutAndPaste() locked on usb1, while inside that method write() is called which is locked on usb2
Shouldn't deadlock occur?
How should I change the code to trigger deadlock?
I get this output:
reading data
Erasing data
reading data
Erasing data
It is a race condition that decides whether the deadlock happens or not as far as I can see, one good option to make the deadlock more likely to happen is a loop, but an easier option might be to insert Thread.sleep(5000); between byte[] data = read(originAddress); and boolean success = other.write(data, destAddress); in UsbDrive::cutAndPaste. EDIT: And remove the existing Thread.sleep(5000);.
EDIT: Clarified answer.
EDIT2: I just ran the code with the changes, and it indeed induces a deadlock now:
import java.util.Date;
public class Main {
private static UsbDrive usb1 = new UsbDrive();
private static UsbDrive usb2 = new UsbDrive();
public static void main(String[] args) throws Exception {
Thread thread1 = new Thread(new ThreadA());
Thread thread2 = new Thread(new ThreadB());
thread1.start();
thread2.start();
thread1.join();
thread2.join();
}
static class ThreadA implements Runnable {
#Override
public void run() {
synchronized (usb1) {
usb1.cutAndPaste(usb2, 1, 2);
}
}
}
static class ThreadB implements Runnable {
#Override
public void run() {
synchronized (usb2) {
usb2.cutAndPaste(usb1, 1, 2);
}
}
}
}
class UsbDrive extends HardDrive {
private Date lastUpdate;
private void updateDate() {
lastUpdate = new Date();
}
public synchronized void cutAndPaste(UsbDrive other, int originAddress, int destAddress) {
byte[] data = read(originAddress);
try {
Thread.sleep(5000);
}
catch (Exception e) {
e.printStackTrace();
}
boolean success = other.write(data, destAddress);
if (success) {
erase(originAddress);
updateDate();
} else {
throw new RuntimeException("Write failed!");
}
}
}
class HardDrive {
public synchronized byte[] read(int address) {return new byte[]{};}
public synchronized boolean write(byte[] data, int address) {return true;}
public synchronized void erase(int address) {}
}
I am trying to create a custom run loop that basically run tasks in a FIFO order and provides three APIs: addTask(Task task), run() and exit()
Task Interface
public interface Task {
public void perform();
public boolean isDone();
public boolean isStarted();
}
Task RunLoop
public class TaskRunLoop {
private Queue<Task> q;
private boolean isRunning;
public TaskRunLoop() {
q = new LinkedList<>();
isRunning = true;
// run();
}
public void addTask(Task t) {
q.offer(t);
}
public void run() {
while(isRunning()) {
while (q.size() > 0) {
Task t = q.poll();
t.perform();
}
}
}
public void exit() {
isRunning = false;
q.removeAll(q);
System.exit(0);
}
public boolean isRunning() {
return isRunning;
}
public static void main(String[] args) {
TaskRunLoop looper = new TaskRunLoop();
for (int i = 0; i < 10; i++) {
looper.addTask(new TaskImpl("task " + i));
}
looper.run();
looper.exit();
System.out.println("still running? " + looper.isRunning());
}
}
The tasks 0 - 9 can be run successfully, but the exit() call does not kill the run loop. I guess that while-loop in the run() method runs infinitely, I was wondering how to exit that while loop. Thanks!
looper.run(); is not a asynchronous call.
So the execution stays indeed stuck on looper.run(); and never reaches looper.exit();.
To prevent it, you could make your class extends Thread.
Which allows to invoke looper.run(); in a separate thread from the main thread that invokes it.
To start the thread, you should invoke start() and not run() (that is a specific method of Thread) :
public static void main(String[] args) {
TaskRunLoop looper = new TaskRunLoop();
for (int i = 0; i < 10; i++) {
looper.addTask(new TaskImpl("task " + i));
}
looper.start(); // instead of run()
looper.exit();
System.out.println("still running? " + looper.isRunning());
}
class hehe implements Runnable {
static int count = 0;
public synchronized void count() {
count++;
}
public void run() {
for (int i = 0; i < 10000; i++) {
count();
}
}
}
public class Sychronise {
public static void main(String[] args) {
Thread a1 = new Thread(new hehe());
Thread a2 = new Thread(new hehe());
a1.start();
a2.start();
try {
a1.join();
a2.join();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println(hehe.count);
}
}
The count should be 20000, but my output is still unstable.
Currently, your synchronized does nothing as it's synchronizing on each individual 'hehe' instance. To make it synchronize on the Class object (which owns the 'count' variable) make your count method static too:
public static synchronized void count(){
count++;
}
Or synchronize on an object:
public class hehe implements Runnable {
static int count= 0;
static Object lock = new Object();
public void count(){
synchronized(lock) {
count++;
}
}
public void run(){
for (int i=0;i<10000;i++){
count();
}
}
}
The issue here is that your count method is synchronized but there are 2 instances of the object Hehe, so each synchronization would be scoped to each instance, in this case I would suggest to use an AtomicInteger
First try with a static count method.
public static synchronized void count(){
count++;
}
public void run(){
for (int i=0;i<10000;i++){
Hehe.count();
}
}
I am not able to understand, where to place methods
hasDataToProcess() & setHasDataToProcess() of MySignal class,
in App9 class to maintain synchronization on object of type NotThreadSafe.
Please help me the know the place !!!
//Signalling via shared objects
Code:
class MySignal{
protected boolean hasDataToProcess = false;
public synchronized boolean hasDataToProcess(){
return this.hasDataToProcess;
}
public synchronized void setHasDataToProcess(boolean hasData){
this.hasDataToProcess = true;
}
}
class NotThreadSafe{
StringBuilder builder = new StringBuilder();
public void add(String text){
this.builder.append(text);
}
public void display(){
System.out.println(builder);
}
}
public class App9 extends Thread {
NotThreadSafe instance;
protected MySignal sharedSignal = new MySignal();
public App9(NotThreadSafe sharedInstance){
this.instance = sharedInstance;
}
#Override
public void run(){
this.instance.add("sham");
this.instance.display();
}
public static void main(String[] args) {
NotThreadSafe sharedInstance = new NotThreadSafe();
for(int i=0; i<10 ; i++){
Thread t = new App9(sharedInstance);
t.start();
}
}
}
I have two methods in two different classes, like this
public class ClassX implements Runnable {
public void methodAandB() {
for(int i=0;i<10;i++) {
System.out.println("This is A and B ");
}
}
#Override
public void run() {
methodAandB();
}
}
public class ClassY implements Runnable {
public void methodAorB() {
for(int i=0;i<10;i++) {
System.out.println("This is A or B");
}
}
#Override
public void run() {
methodAorB(a);
}
}
Thread t1 is calling methodAandB().
Thread t2 is calling methodAorB().
Can I switch between these two threads after each iteration of loop in methods?
I want to get output like this:
This is A and B
This is A or B
This is A and B
This is A or B
This is A and B
This is A or B
This is A and B
This is A or B
Best example of flip-flop between threads:
Given two int array (even and odd), 2 threads printing their numbers in natural order.
package com.rough;
public class ThreadsBehaviour {
static Object lock = new Object();
public static void main(String[] args) throws InterruptedException {
int a[] = {1,3,5,7,9};
int b[] = {2,4,6,8,10};
Thread odd = new Thread(new Looper(a, lock));
Thread even = new Thread(new Looper(b, lock));
odd.start();
even.start();
}
}
class Looper implements Runnable
{
int a[];
Object lock;
public Looper(int a[], Object lock)
{
this.a = a;
this.lock = lock;
}
#Override
public void run() {
for(int i = 0; i < a.length; i++)
{
synchronized(lock)
{
System.out.print(a[i]);
try
{
lock.notify();
if(i == (a.length - 1))
{
break;
}
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
You can achieve this simply by using the shared variables. I have implemented and verified the problem. code is below
class X
public class ClassX implements Runnable {
public void methodAandB() {
for(int i=0;i<10;i++) {
while(GlobalClass.isClassXdone)
{}
System.out.println("This is A and B ");
GlobalClass.isClassXdone = true;
GlobalClass.isClassYdone = false;
}}
#Override
public void run() {
methodAandB(); } }
ClassY
public class ClassY implements Runnable {
public void methodAorB() {
for(int i=0;i<10;i++) {
while(GlobalClass.isClassYdone)
{}
System.out.println("This is A or B ");
GlobalClass.isClassYdone = true;
GlobalClass.isClassXdone = false;}}
#Override
public void run() {
methodAorB();}}
Definition of the shared variable
public class GlobalClass {
public static boolean isClassXdone = false ;
public static boolean isClassYdone = false ;
}
You can just start your thread using t1.start and t2.start to get the desired output
Thread t1 = new Thread(new ClassX());
Thread t2 = new Thread(new ClassY());
t1.start();
t2.start();
This is probably more than needed to solve the problem, but, as it seems to be an introduction to concurrent programming exercise, it should be along the lines of what you'll encounter.
You should probably have a shared object that both your threads know, so that they may synchronize through it. Like so:
public class MyMutex {
private int whoGoes;
private int howMany;
public MyMutex(int first, int max) {
whoGoes = first;
howMany = max;
}
public synchronized int getWhoGoes() { return whoGoes; }
public synchronized void switchTurns() {
whoGoes = (whoGoes + 1) % howMany;
notifyAll();
}
public synchronized void waitForMyTurn(int id) throws
InterruptedException {
while (whoGoes != id) { wait(); }
}
}
Now, your classes should receive their respective identifier, and this shared object.
public class ClassX implements Runnable {
private final int MY_ID;
private final MyMutex MUTEX;
public ClassX(int id, MyMutex mutex) {
MY_ID = id;
MUTEX = mutex;
}
public void methodAandB() {
for(int i = 0; i < 10; i++) {
try {
MUTEX.waitForMyTurn(MY_ID);
System.out.println("This is A and B ");
MUTEX.switchTurns();
} catch (InterruptedException ex) {
// Handle it...
}
}
}
#Override
public void run() { methodAandB(); }
}
ClassY should do the same. Wait for its turn, do its action, and then yield the turn to the other.
I know it's a little late to answer this. But it's yesterday only I have come across this question. So I guess it's never too late.. ;)
Solution, as #afsantos mentioned is having a shared object between the two threads and implementing mutual exclusion on the shared object. The shared object could be alternatively locked by the two threads. Two possible implementations are as follows. This is actually more like an extension of #afsantos solution. His work is hereby acknowledged.
Solution 1:
Blueprint of the object that will be shared is as follows.
public class MutEx {
public int whoGoes, howMany;
public MutEx(int whoGoes, int howMany) {
this.whoGoes = whoGoes;
this.howMany = howMany;
}
public synchronized void switchTurns(){
this.whoGoes = (this.whoGoes + 1) % 2;
notifyAll();
}
public synchronized void waitForTurn(int id) throws InterruptedException{
while(this.whoGoes != id)
wait();
}
}
Then, you could implement the ClassX as follows.
public class ClassX implements Runnable {
private final int MY_ID;
private final MutEx MUT_EX;
public ThreadOne(int MY_ID, MutEx MUT_EX) {
this.MY_ID = MY_ID;
this.MUT_EX = MUT_EX;
}
#Override
public void run(){
this.doTheWork();
}
public void doTheWork(){
for(int i = 0; i < 10; i++){
try {
MUT_EX.waitForMyTurn(MY_ID);
System.out.println("This is A and B");
MUT_EX.switchTurns();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
ClassY also will be the same, with whatever the differences you need to be there. Then, in the invocation (i.e. in the main method),
public static void main(String[] args) {
MutEx mutEx = new MutEx(0, 2);
Thread t1 = new Thread(new ClassX(0, mutEx);
Thread t2 = new Thread(new ClassY(1, mutEx));
t1.start();
t2.start();
}
Voila! You have two threads, alternating between each as you need.
Solution 2: Alternatively, you could implement the ClassX & ClassY as follows.
public class ClassX extends Thread{
Here, you are subclassing the java.lang.Thread to implement your requirement. For this to be invoked, change the main method as follows.
public static void main(String[] args) {
MutEx mutEx = new MutEx(0, 2);
ClassX t1 = new ClassX(0, mutEx);
ClassY t2 = new ClassY(1, mutEx);
t1.start();
t2.start();
}
Run this, and you have the same result.
If you don't need to use Thread try this code:
for (int i = 0; i < 20; i++) {
if (i % 2 == 0) {
methodAandB();
} else {
methodAorB();
}
}