Dividing a 1D array into a 2D array - java

So I have homework that asked me to:
Write a method that takes two parameters: an array of integers and an integer that represents a number of elements. It should return a two-dimensional array that results from dividing the passed one-dimensional array into rows that contain the required number of elements. Note that the last row may have less number of elements if the length of the array is not divisible by the required number of elements. For example, if the array {1,2,3,4,5,6,7,8,9} and the number 4 are passed to this method, it should return the two-dimensional array {{1,2,3,4},{5,6,7,8},{9}}.
I tried to solve it using this code:
public static int[][] convert1DTo2D(int[] a, int n) {
int columns = n;
int rows = a.length / columns;
double s = (double) a.length / (double) columns;
if (s % 2 != 0) {
rows += 1;
}
int[][] b = new int[rows][columns];
int count = 0;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
if (count == a.length) break;
b[i][j] = a[count];
count++;
}
}
return b;
}
But I had a problem which is when I try to print the new array this is the output:
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 0, 0, 0]]
So how can I remove the 3 zeros at the end? Just a note that I can't use any method from java.util.* or any built-in method to do this.

Change the 2D array's initialization to not contain the second dimension: new int[rows][]. Your array now has null arrays inside it. You have to initialize those in your loop: b[i]=new int[Math.min(columns,remainingCount)]; where remainingCount is the amount of numbers outside the 2d array.

Populating a 2d array with values from a 1d array as long as they are present:
public static int[][] convert1DTo2D(int[] arr, int n) {
// row count
int m = arr.length / n + (arr.length % n == 0 ? 0 : 1);
// last row length
int lastRow = arr.length % n == 0 ? n : arr.length % n;
return IntStream.range(0, m)
.mapToObj(i -> IntStream.range(0, i < m - 1 ? n : lastRow)
.map(j -> arr[j + i * n])
.toArray())
.toArray(int[][]::new);
}
public static void main(String[] args) {
int[] arr1 = {1, 2, 3, 4, 5, 6, 7, 8, 9};
int[][] arr2 = convert1DTo2D(arr1, 4);
System.out.println(Arrays.deepToString(arr2));
// [[1, 2, 3, 4], [5, 6, 7, 8], [9]]
}
See also: How to populate a 2d array with values from a 1d array?

It may be better to switch arguments in the method:
int[][] convert1DTo2D(int cols, int... arr)
to allow use of vararg.
Also, it is possible to iterate on the input array (single loop) instead of nested loops.
Example implementation:
public static int[][] convert1DTo2D(int cols, int... a) {
int lastRowCols = a.length % cols;
int rows = a.length / cols;
if (lastRowCols == 0) {
lastRowCols = cols;
} else {
rows++;
}
int[][] b = new int[rows][];
for (int i = 0; i < a.length; i++) {
int r = i / cols;
int c = i % cols;
if (c == 0) { // start of the row
b[r] = new int[r == rows - 1 ? lastRowCols : cols];
}
b[r][c] = a[i];
}
return b;
}

Adding this if-condition to your code will shorten the final array should it not be the right size:
...
final int[][] b = new int[rows][columns];
if ((a.length % columns) != 0) {
b[rows - 1] = new int[a.length % columns];
}
int count = 0;
...
% is the Modulo operator which gives you the remainder of a division of the first and second number.
9 % 4 would return 1, the exact size needed for our final array.
We then merely have to replace the final array with a new one of that size.

Related

how to loop over two array's but saving execution time as much as possible

I have two arrays array a = [1, 2, 3, 4, 5] and array b = [6, 5, 4, 3, 2] and i am returning a array list which contains a count where i taking elements of array b and checking what elements of array a are greater than or equal to the each element of array b, and i am storing this in count varible and later adding each count to the list so the output will be list = [0, 1, 2, 3, 4], but the code i've written is lacking in the performance for larger sets of input and not giving supposed answer's in the expected way any idea of how can i improve my code to improve the performance
static List<Integer> giantArmy(int a[],int b[]){
List<Integer> list = new ArrayList<Integer>();
if (a.length == 1 && a[0] == 0) {
list.add(0);
return list;
}
int count = 0;
for (int i = 0; i < b.length; i++) {
for (int j = 0; j < a.length; j++) {
if (a[j] >= b[i]) {
count++;
}
}
list.add(count);
count = 0;
}
return list;
}
An implementation of Basil Bourque's comment.
This is O(n log n). (Sort is O(n log n) and binary search O(log n) repeated n times)
static List<Integer> giantArmy(int a[],int b[]){
int aLength = a.length;
List<Integer> result = new ArrayList<>();
Arrays.sort(a);
for (int i : b) {
int index = Arrays.binarySearch(a, i);
if (index < 0)
index = -index - 1;
result.add(aLength - index);
}
return result;
}
public static void main(String[] args) {
System.out.println(giantArmy(new int[] {1, 2, 3, 4, 5}, new int[] {6, 5, 4, 3, 2}));
}
output:
[0, 1, 2, 3, 4]
A binary search of n for the sorted a yields the number of elements of a whose number of elements to the right of the position found is greater than or equal to n.
[1 2 3 4 5]
(number of elements >= 6) = 0
x (number of elements >= 5) = 1
x x (number of elements >= 4) = 2
x x x (number of elements >= 3) = 3
x x x x (number of elements >= 2) = 4
x x x x x (number of elements >= 1) = 5
x x x x x (number of elements >= 0) = 5
static List<Integer> giantArmy(Integer a[],Integer b[]){
TreeSet<Integer> ts = new TreeSet<>();
List<Integer> aList = Arrays.asList(a);
ts.addAll(aList);
Integer[] count = new Integer[b.length];
for (int i = 0; i < b.length; i++) {
Set<Integer> tail_set = ts.tailSet(b[i]);
count[i] = tail_set.size();
}
return Arrays.asList(count);
}
OUTPUT:
[0, 1, 2, 3, 4]

Random Array generation

I am trying to create an array and have it filled with 0 or 1's randomly throughout the array. Below you will find the code. I am very new to java so any help would be greatly appreciated.
private static void randHouse() {
int rows = 4;
int columns = 5;
int i = 0;
int y = 0;
int [][] myList = {
{0,0,0,0,0},
{0,0,0,0,0},
{0,0,0,0,0},
{0,0,0,0,0}
};
System.out.println(Arrays.deepToString(myList)); // just prints the array
for (i : rows); {
for (y : columns);{
myList[i][y] = (int)random() * 10;
}
}
}
I am currently getting the error :
java: bad initializer for for-loop
It is easiest (imo) to use streams.
int r = 4;
int c = 5;
int[][] result = randHouse(r,c);
for (int[] row : result) {
System.out.println(Arrays.toString(row));
}
Prints something like
[1, 1, 0, 1, 1]
[0, 1, 0, 0, 1]
[1, 0, 1, 1, 1]
[1, 0, 1, 0, 0]
The IntStream iterates over the rows
the inner rand call generates each row of 1's and 0's.
then they are combined into an array of arrays.
private static int[][] randHouse(int r, int c) {
Random rand = new Random();
return IntStream.range(0, r)
.mapToObj(i -> rand.ints(c, 0, 2).toArray())
.toArray(int[][]::new);
}
Note: In your original problem, (int)Math.random()*10 will first convert the random value to 0 and then multiply by 10. So all you get are zeros. If you did the following (int)(Math.random()*10) you would get a value between 0 and 9 inclusive. Instead of 10, you should use 2.
for (int i = 0; i < rows.length; i++) {
for (int j = 0; j < columns.length; j++) {
myList[i][j] = (int)random() * 10;
}
}

Filling a jagged 2d array first by columns

I want to write a function that takes an 2d array and fills it with 1...n but counting the columns first instead of the rows:
input = {{0, 0, 0, 0}, {0}, {0}, {0, 0}};
the output should be: {{1, 5, 7, 8}, {2}, {3}, {4, 6}};
if i were to loop through rows and then colums i get:
private static void fill1(int[][] input) {
int count = 1;
for (int i = 0; i < input.length; i++) {
for (int j = 0; j < input[i].length; j++) {
input[i][j] = count;
count++;
}
}
}
How do I loop through colums first?
You can do this by first transposing your input, executing your fill1 code and then transposing the output again.
See this question for how to transpose a 2 dimensional array in Java: java multi-dimensional array transposing
If you were dealing with a regular 2d matrix, where all the rows had the same number of columns, the code would be a simple modification of the code for filling the matrix row-by-row:
private static void fill1(int[][] input) {
int count = 1;
for (int j = 0; j < input[0].length; j++) {
for (int i = 0; i < input.length; i++) {
input[i][j]= count;
count++;
}
}
}
The process is basically the same for a ragged 2d array, but with a couple added twists:
You need to do some extra work to figure out how many columns there could be (i.e., the maximum row length)
You need to be prepared for the case when there's no cell at a given row/column position.
The following modification of the previous code addresses these issues:
private static void fill1(int[][] input) {
int maxCols = input[0].length;
for (int i = 1; i < input.length; ++i) {
if (input[i].length > maxCols) {
maxCols = input[i].length;
}
}
int count = 1;
for (int j = 0; j < maxCols; j++) {
for (int i = 0; i < input.length; i++) {
if (j < input[i].length) {
input[i][j]= count;
count++;
}
}
}
}
To iterate first over the columns of a jagged 2d array to fill it, you have to know the maximum number of columns beforehand, but if you don't know that, you can iterate to the Integer.MAX_VALUE and check at each step if the columns are still present or not:
int[][] arr = {{0, 0, 0, 0}, {0}, {0}, {0, 0}};
int count = 1;
for (int col = 0; col < Integer.MAX_VALUE; col++) {
boolean max = true;
for (int row = 0; row < arr.length; row++) {
if (col < arr[row].length) {
arr[row][col] = count;
count++;
max = false;
}
}
if (max) break;
}
for (int[] row : arr) {
System.out.println(Arrays.toString(row));
}
Output:
[1, 5, 7, 8]
[2]
[3]
[4, 6]
See also: How do you rotate an array 90 degrees without using a storage array?
To populate a 2d array first by columns, you can use two nested streams. In case of a jagged 2d array, when you don't know beforehand the number of the columns in each row, in an outer stream you can traverse while the columns are still present.
/**
* #param arr array that should be populated.
* #return maximum row length, i.e. columns count.
*/
private static long populate(int[][] arr) {
AtomicInteger counter = new AtomicInteger(1);
return IntStream
// traverse through the array columns
.iterate(0, i -> i + 1)
// process the array rows where
// this column is present
.mapToLong(i -> Arrays.stream(arr)
// filter those rows where
// this column is present
.filter(row -> row.length > i)
// assign a value to the element and increase the counter
.peek(row -> row[i] = counter.getAndIncrement())
// count of rows where this column is present
.count())
// while the columns are still present
.takeWhile(i -> i > 0)
// max columns count
.count();
}
public static void main(String[] args) {
int[][] arr = {{0, 0, 0, 0, 0, 0}, {0, 0}, {0}, {0, 0, 0}};
System.out.println("Max columns count: " + populate(arr));
System.out.println(Arrays.deepToString(arr));
}
Output:
Max columns count: 6
[[1, 5, 8, 10, 11, 12], [2, 6], [3], [4, 7, 9]]
See also: How to create a new List from merging 3 ArrayLists in round robin style?

Kth Smallest Element in a Sorted Matrix

So I am working on a Leetcode question and my code works for some cases but fails for certain cases.
Here is the question:
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth smallest element in the matrix.
Note that it is the kth smallest element in the sorted order, not the kth distinct element.
Example:
matrix = [[1, 5, 9], [10, 11, 13], [12, 13, 15]]
k = 8
return: 13
My approach is to use a minHeap, even if it stated that the array is sorted I still needed to make sure that I have it sorted from least to greatest value.
Here is my code:
class Solution {
public int kthSmallest(int[][] matrix, int k) {
int row = matrix.length;
int col = matrix[0].length;
int result = 0;
HashMap<Integer, Integer> map = new HashMap<>();
//populate HashMap
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
map.put(matrix[i][j],
map.getOrDefault(matrix[i][j], 0) + 1);
}
}
PriorityQueue<Map.Entry<Integer, Integer>> pq =
new PriorityQueue<>((n1, n2) -> n1.getValue() - n2.getValue());
pq.addAll(map.entrySet());
for (int i = 0; i < k && !(pq.isEmpty()); i++) {
result = pq.poll().getKey();
}
return result;
}
}
Here are my inputs:
Input 1: [[1,5,9],[10,11,13],[12,13,15]]
k = 8
Input 2: [[1,2],[1,3]]
k = 1
Here are the outputs:
Output 1: 13
Output 2: 2
Notice that the code works just fine for my first input where the 8th smallest element in the 2d-array is 13, but for the second input, the code is returning 2 as my first smallest element rather than returning 1.
Can someone please help me fix the code? I ask that you please not implement some fancy shorthand sorting technique e.g. Arrays.sort... it's not ideal for me as I am trying to learn how to implement heaps. Thanks a bunch :)
For solving this problem we can also binary search (a bit more efficient):
public class Solution {
public static final int kthSmallest(final int[][] matrix, final int k) {
int lo = matrix[0][0];
int hi = matrix[matrix.length - 1][matrix[0].length - 1] + 1;
while (lo < hi) {
final int mid = lo + (hi - lo) / 2;
int count = 0;
int col = matrix[0].length - 1;
for (int row = 0; row < matrix.length; ++row) {
while (col >= 0 && matrix[row][col] > mid) {
col--;
}
count += (col + 1);
}
if (count < k) {
lo = mid + 1;
} else {
hi = mid;
}
}
return lo;
}
}
You can use the flatMapToInt method to iterate over the rows of a 2d array in one stream:
public static void main(String[] args) {
int[][] matrix1 = {{1, 5, 9}, {10, 11, 13}, {12, 13, 15}};
int[][] matrix2 = {{1, 2}, {1, 3}};
System.out.println(kthSmallest(matrix1, 8)); // 13
System.out.println(kthSmallest(matrix2, 1)); // 1
}
public static int kthSmallest(int[][] matrix, int k) {
return Arrays.stream(matrix)
.flatMapToInt(Arrays::stream)
.skip(k - 1)
.findFirst()
.getAsInt();
}
public static int kthSmallest(int[][] matrix, int k) {
return Arrays
.stream(matrix)
.flatMapToInt(x -> Arrays.stream(x))
.sorted()
.skip(k-1)
.findFirst()
.getAsInt();
}
public static int kthSmallestNumber(int[][] matrix, int k) {
return Arrays.stream(matrix).flatMapToInt(x->Arrays.stream(x))
.distinct()
.sorted()
.skip(k-1)
.findFirst()
.getAsInt();
}

How to rotate an array?

I have the following problem to test:
Rotate an array of n elements to the right by k steps.
For instance, with n = 7 and k = 3, the array [1,2,3,4,5,6,7] is rotated to
[5,6,7,1,2,3,4]. How many different ways do you know to solve this problem?
My solution in intermediate array:
With Space is O(n) and time is O(n), I can create a new array and then copy elements to the new array. Then change the original array by using System.arraycopy().
public void rotate(int[] nums, int k) {
if (k > nums.length)
k = k % nums.length;
int[] result = new int[nums.length];
for (int i = 0; i < k; i++) {
result[i] = nums[nums.length - k + i];
}
int j = 0;
for (int i = k; i < nums.length; i++) {
result[i] = nums[j];
j++;
}
System.arraycopy(result, 0, nums, 0, nums.length);
}
But is there a better way we can do it with bubble rotate (like bubble sort) in O(1) space?
Method 1 - The Reversal Algorithm(Good One):
Algorithm:
rotate(arr[], d, n)
reverse(arr[], l, n);
reverse(arr[], 1, n-d) ;
reverse(arr[], n - d + 1, n);
Let AB are the two parts of the input array where A = arr[0..n-d-1] and B = arr[n-d..n-1]. The idea of the algorithm is:
Reverse all to get (AB) r = BrAr.
Reverse A to get BrA. /* Ar is reverse of A */
Reverse B to get BA. /* Br is reverse of B */
For arr[] = [1, 2, 3, 4, 5, 6, 7], d =2 and n = 7
A = [1, 2, 3, 4, 5] and B = [ 6, 7]
Reverse all, we get BrAr = [7, 6, 5, 4, 3, 2, 1]
Reverse A, we get ArB = [7, 6, 1, 2, 3, 4, 5]
Reverse B, we get ArBr = [6, 7, 5, 4, 3, 1, 2]
Here is the Code Snippet:
void righttRotate(int arr[], int d, int n)
{
reverseArray(arr, 0, n-1);
reverseArray(arr, 0, n-d-1);
reverseArray(arr, n-d, n-1);
}
void reverseArray(int arr[], int start, int end)
{
int i;
int temp;
while(start < end)
{
temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
Method 2 - A Juggling Algorithm
Divide the array in different sets where number of sets is equal to GCD of n and d and move the elements within sets.
If GCD is 1, then elements will be moved within one set only, we just start with temp = arr[0] and keep moving arr[I+d] to arr[I] and finally store temp at the right place.
Here is an example for n =12 and d = 3. GCD is 3 and
Let arr[] be {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
Elements are first moved in first set
arr[] after this step --> {4 2 3 7 5 6 10 8 9 1 11 12}
Then in second set.
arr[] after this step --> {4 5 3 7 8 6 10 11 9 1 2 12}
Finally in third set.
arr[] after this step --> {4 5 6 7 8 9 10 11 12 1 2 3}
Here is the code:
void leftRotate(int arr[], int d, int n)
{
int i, j, k, temp;
int gcd = gcd(d, n);
for (i = 0; i < gcd; i++)
{
/* move i-th values of blocks */
temp = arr[i];
j = i;
while(1)
{
k = j + d;
if (k >= n)
k = k - n;
if (k == i)
break;
arr[j] = arr[k];
j = k;
}
arr[j] = temp;
}
}
int gcd(int a,int b)
{
if(b==0)
return a;
else
return gcd(b, a%b);
}
Time complexity: O(n)
Auxiliary Space: O(1)
Method 3 - Rotate one by one:
righttRotate(arr[], d, n)
start
For i = 0 to i < d
Right rotate all elements of arr[] by one
end
To rotate by one, store arr[n-1] in a temporary variable temp, move arr[1] to arr[2], arr[2] to arr[3] …and finally temp to arr[0]
Let us take the same example arr[] = [1, 2, 3, 4, 5, 6, 7], d = 2, rotate arr[] by one 2 times. We get [7, 1, 2, 3, 4, 5, 6] after first rotation and [ 6, 7, 1, 2, 3, 4, 5] after second rotation.
Her is Code Snippet:
void leftRotate(int arr[], int d, int n)
{
int i;
for (i = 0; i < d; i++)
leftRotatebyOne(arr, n);
}
void leftRotatebyOne(int arr[], int n)
{
int i, temp;
temp = arr[n-n];
for (i = 0; i < n-1; i++)
arr[i] = arr[i+1];
arr[n - 1] = temp;
}
Time complexity: O(n*d)
Auxiliary Space: O(1)
The following code will do your job. This is for right rotate.
public void rightrotate(int[] nums, int k) {
k %= nums.length;
reverse(nums, 0, nums.length - 1);
reverse(nums, 0, k - 1);
reverse(nums, k, nums.length - 1);
}
public void reverse(int[] nums, int start, int end) {
while (start < end) {
int temp = nums[start];
nums[start] = nums[end];
nums[end] = temp;
start++;
end--;
}
}
If you want to do left rotate just use the following
public void leftrotate(int[] nums, int k) {
k %= nums.length;
reverse(nums, 0, k - 1);
reverse(nums, k, nums.length - 1);
reverse(nums, 0, nums.length - 1);
}
When k is negative, it rotates to the left.
Space is O(1) and time is O(n)
static void rotate(int[] num, int k) {
int n = num.length;
k = k % n;
if (k < 0) k += n;
int[] result = new int[n];
System.arraycopy(num, 0, result, k, n - k);
System.arraycopy(num, n - k, result, 0, k);
System.arraycopy(result, 0, num, 0, n);
}
ArrayUtil class is used to provide following utilities in primitive array
swap array elements
reverse array between startIndex and endIndex
leftRotate array by shift
Algorithm for array rotation by shift-
If we have to reverse array by shift value then take mod(%) with array length so that shift will become smaller than array length.
Reverse array between index 0 and shift-1
Reverse array between index shift and length-1.
Reverse complete array between index 0 and length-1.
Space Complexity: In-place Algorithm, No extra space needed so O(1).
Time Complexity : Array reversal of size k take O(k/2) i.e swapping k/2 pairs of elements.
Array Reversal time- O(k) for k size array.
Total time in Rotation-
O(1) ..........for step 1
O(shift) ......for step 2
O(n - shift) ...for step 3
O(n) ...........for step 4
Total Time for array Rotation: O(1) + O(shift) + O(n-shift) + O(n) = O(n)
public class Solution {
public static void main(String[] args) {
int k = 3;
int a[] = {1,2,3,4,5,6,7};
ArrayUtil.leftRotate(a, k);
for (int i : a)
System.out.println(i);
}
}
class ArrayUtil {
public static final boolean checkIndexOutOfRange(int[] array, int index) {
if (index < 0 || index > array.length)
return true;
return false;
}
public static final void swap(int[] array, int i, int j) {
if (checkIndexOutOfRange(array, i) || checkIndexOutOfRange(array, j))
return;
int t = array[i];
array[i] = array[j];
array[j] = t;
}
public static final void reverse(int[] array, int startIndex, int endIndex) {
if (checkIndexOutOfRange(array, startIndex) || checkIndexOutOfRange(array, endIndex))
return;
while (startIndex < endIndex) {
swap(array, startIndex, endIndex);
startIndex++;
endIndex--;
}
}
public static final void reverse(int[] array) {
reverse(array, 0, array.length - 1);
}
public static final void leftRotate(int[] array, int shift) {
int arrayLength = array.length;
if (shift >= arrayLength)
shift %= arrayLength;
reverse(array, 0, shift - 1);
reverse(array, shift, arrayLength - 1);
reverse(array);
}
}
Partial Code for ONE time array rotation
last=number_holder[n-1];
first=number_holder[0];
//rotation
number_holder[0]=last;
for(i=1;i<n;i++)
{
last=number_holder[i];
number_holder[i]=first;
first=last;
}
Display the array
for(i=1;i<n;i++)
{
System.out.println(number_holder[i]);
}
AFAIK, there are three ways to rotate an array with O(1) extra space, or put it another way, to swap two contiguous subarray.
reverse approach. reverse both part, then reverse all. most easy to code.
successively swap two contiguous block, until all items are in place.
juggling rotate, shell sort like. -- worse cache performance.
C++ has builtin function std::rotate(), which takes three iterator first, middle, last,
and return new_middle, which is where the old first element lies in the rotated
sequence.
I have checked the implementation on my computer, which use second approach I listed above.
(line 1246 in /usr/lib/gcc/i686-pc-cygwin/5.4.0/include/c++/bits/stl_algo.h).
Below is my implementation of rotate, with test program.
#include <iostream>
#include <vector>
// same logic with STL implementation, but simpler, since no return value needed.
template <typename Iterator>
void rotate_by_gcd_like_swap(Iterator first, Iterator mid, Iterator last) {
if (first == mid) return;
Iterator old = mid;
for (; mid != last;) {
std::iter_swap(first, mid);
++first, ++mid;
if (first == old) old = mid; // left half exhausted
else if (mid == last) mid = old;
}
}
// same logic with STL implementation
template <typename Iterator>
Iterator rotate_by_gcd_like_swap_then_return_new_mid(Iterator first, Iterator mid, Iterator last) {
if (first == mid) return last;
if (mid == last) return first;
Iterator old = mid;
for(;;) {
std::iter_swap(first, mid);
++first, ++mid;
if (first == old) old = mid;
if (mid == last) break;
}
Iterator result = first; // when first time `mid == last`, the position of `first` is the new `mid`.
for (mid = old; mid != last;) {
std::iter_swap(first, mid);
++first, ++mid;
if (first == old) old = mid;
else if (mid == last) mid = old;
}
return result;
}
int main() {
using std::cout;
std::vector<int> v {0,1,2,3,4,5,6,7,8,9};
cout << "before rotate: ";
for (auto x: v) cout << x << ' '; cout << '\n';
int k = 7;
rotate_by_gcd_like_swap(v.begin(), v.begin() + k, v.end());
cout << " after rotate: ";
for (auto x: v) cout << x << ' '; cout << '\n';
cout << "sz = " << v.size() << ", k = " << k << '\n';
}
Above solutions talk about shifting array elements either by reversing them or any other alternative.
I've unique solution. How about determining the starting position of element after n rotations. Once we know that, then simply insert elements from that index and increment counter using modulus operation. Using this method we can avoid using extra array operations and so on.
Here is my code:
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
void rotateLeft(int n,int r) {
vector<long int> vec(n);
int j = n;
// get the position of starting index after r left rotations.
while(r!=0) {
--j;
if(j==0)
j = n;
--r;
}
for(long int i=0;i<n;++i) {
// simply read the input from there and increment j using modulus operator.
cin>>vec[j];
j = (j+1)%n;
}
// print the array
for(long int i=0;i<n;++i)
cout<<vec[i]<<" ";
}
int rotateRight (int n,int r) {
// get the position of starting index after r left rotations.
int j = r % n;
vector<long int> vec(n);
for(int i=0;i<n;i++) {
cin>>vec[j];
j=(j+1)%n;
}
for(int i=0;i<n;i++)
cout<<vec[i]<<" ";
}
int main() {
long int n,r; // n stands from number of elements in array and r stands for rotations.
cin>>n>>r;
// Time Complexity: O(n+r) Space Complexity: O(1)
rotateLeft(n,r);
// Time Complexity: O(n) Space Complexity: O(1)
rotateRight(n,r);
return 0;
}
Python code:
def reverse(arr,start , end):
while(start <= end):
arr[start] , arr[end] = arr[end] , arr[start]
start = start+1
end = end-1
arr = [1,2,3,4,5,6,7]
n = 7
k = 2
reverse(arr,0,n-1)
# [7,6,5,4,3,2,1]
reverse(arr,0,n-1-k)
# [3,4,5,6,7,2,1]
reverse(arr,n-k,n-1)
# [3,4,5,6,7,1,2]
print arr
# [3, 4, 5, 6, 7, 8, 9, 1, 2]
In Ruby Its very simple, Please take a look, Its one line.
def array_rotate(arr)
i, j = arr.length - 1, 0
arr[j],arr[i], i, j = arr[i], arr[j], i - 1, j + 1 while(j<arr.length/2)
puts "#{arr}"
end
Input: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
Output: [20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1.using a temp array and O(n) time
public static void rotateAnArrayUsingTemp(int arr[], int d, int n) {
int temp[] = new int[d];
int tempIndex = 0;
for (int i = 0; i < d; i++) {
temp[i] = arr[i];
}
for (int i = 0; i < arr.length - d; i++) {
arr[i] = arr[i + d];
}
for (int i = arr.length - d; i < arr.length; i++) {
arr[i] = temp[tempIndex++];
}
}
This is a simple solution to rotate an array.
public class ArrayRotate {
public int[] rotateArray(int array[], int k) {
int newArray[] = new int[array.length];
for (int i = 0; i < array.length; i++) {
newArray[(i + k) % array.length] = array[i];
}
System.arraycopy(newArray, 0, array, 0, array.length);
return newArray;
}
public static void main(String[] args) {
int array[] = { 1, 2, 3, 4, 5, 6, 7 };
ArrayRotate rotate = new ArrayRotate();
rotate.display(rotate.rotateArray(array, 3));
}
public void display(int array[]) {
for (int i : array) {
System.out.print(i + ",");
}
}
}
Runtime complexity is O(n)
There are several other algorithm to achieve the same.
using temp array
Rotate One By one
Juggling algorithm
reversal method
This solution is O(1) space and O(N) time. It is in C#, takes an array parameter and rotates it in place. The algorithm goes through the first s (the shift) elements, starting with the first element moves it to the s_th position, then moves the s_th to the 2s_th position etc. If each of the first s elements rotates back to itself then there will be (arrayLength / s) * s = arrayLength loops, and at the end the array will be rotated by s. If the first s elements do not rotate back themselves, then there will still be cycles, say if s = 4, there could be one cycle which is 1-3-1 and the second 2-4-2, the line - if (ind == indAtBeg), checks for a cycle and terminates the while loop. The variable loopCount increments, when there is a rotation starting at any of the first s elements.
public static void rotateArrayByS(int[] ar, int s)
{
int len = ar.Length, ind = 0, temp1 = ar[0],
temp2 /*temp1 and temp2 for switching elements*/,
loopCount /*rotations starting at the first s elemtns of ar*/ = 0;
s %= len;
while (loopCount < s)
{
int indAtBeg = ind;
temp1 = ar[ind];
bool done = false;
while (!done)
{
if (ind < s)
loopCount++;
ind = (ind + s) % len;
//cycle detected
if (ind == indAtBeg)
done = true;
//switch the elements
temp2 = ar[ind];
ar[ind] = temp1;
temp1 = temp2;
}
++ind;
}
}
#include <stdio.h>
int
main(void)
{
int arr[7] = {1,2,3,4,5,6,7};
int new_arr[7] = {0};
int k = 3;
int len = 7;
int i=0;
for (i = (len-1); i>=0; i--) {
if ((i+k) >= len) {
new_arr[(i+k-len)] = arr[i];
} else {
new_arr[(i+k)] = arr[i];
}
}
for (i=0;i<len;i++) {
printf("%d ", new_arr[i]);
}
return 0;
}
Time complexity O(n)
Space complexity O(2*n).
Thanks.
Here is the complete Java code for left and right array rotation by k steps
import java.util.*;
public class ArrayRotation {
private static Scanner sc;
public static void main(String[] args) {
int n,k;
sc = new Scanner(System.in);
System.out.print("Enter the size of array: ");
n = sc.nextInt();
int[] a = new int[n];
System.out.print("Enter the "+n+" elements in the list: ");
for(int i=0;i<n;i++)
a[i] = sc.nextInt();
System.out.print("Enter the number of left shifts to array: ");
k = sc.nextInt();
System.out.print("Array before "+k+" shifts: ");
display(a);
leftRoation(a,k);
System.out.println();
System.out.print("Array after "+k+" left shifts: ");
display(a);
rightRoation(a,k);
System.out.println();
System.out.print("Array after "+k+" right shifts: ");
display(a);
}
public static void leftRoation(int[] a, int k){
int temp=0, j;
for(int i=0;i<k;i++){
temp = a[0];
// j=0; // both codes work i.e. for loop and while loop as well
// while(j<a.length-1){
// a[j]=a[j+1];
// j++;
// }
for(j=0;j<a.length-1;j++)
a[j]=a[j+1];
a[j]=temp;
}
}
public static void rightRoation(int[] a, int k){
int temp=0, j;
for(int i=0;i<k;i++){
temp = a[a.length-1];
for(j=a.length-1;j>0;j--)
a[j]=a[j-1];
a[j]=temp;
}
}
public static void display(int[] a){
for(int i=0;i<a.length;i++)
System.out.print(a[i]+" ");
}
}
/****************** Output ********************
Enter the size of array: 5
Enter the 5 elements in the list: 1 2 3 4 5
Enter the number of left and right shifts to array: 2
Array before 2 shifts: 1 2 3 4 5
Array after 2 left shifts: 3 4 5 1 2
Array after 2 right shifts: 1 2 3 4 5 // here the left shifted array is taken as input and hence after right shift it looks same as original array.
**********************************************/
My solution... (a: the array, n : size of array, k: number of shifts) :
public static int[] arrayLeftRotation(int[] a, int n, int k) {
if (k == 0) return a;
for (int i = 0; i < k; i++) {
int retenue = a[0];
int[] copie = java.util.Arrays.copyOfRange(a, 1, n );
for (int y = 0; y <= copie.length - 1 ; y++) {
a[y] = copie[y];
}
a[n-1] = retenue;
}
return a;
}
Java implementation for right rotation
public int[] solution(int[] A, int K) {
int len = A.length;
//Create an empty array with same length as A
int arr[] = new int[len];
for (int i = 0; i < len; i++) {
int nextIndex = i + K;
if (nextIndex >= len) {
// wraps the nextIndex by same number of K steps
nextIndex = nextIndex % len;
}
arr[nextIndex] = A[i];
}
return arr;
}
>>> k = 3
>>> arr = [1,2,3,4,5,6,7]
>>> actual_rot = k % len(arr)
>>> left_ar = arr[:-actual_rot]
>>> right_ar = arr[-actual_rot:]
>>> result = right_ar + left_ar
>>> result
[5, 6, 7, 1, 2, 3, 4]
A better way to rotate an array by k steps is:
a = [1,2,3,4,5,6]
b = a[:]
k = 2
for i in range(len(a)):
a[(i + k) % len(a)] = b[i]## (rotate right by k steps)
#a[(i - k) % len(a)] = b[i]## (rotate left by k steps)
print(a)
o/p:
[6, 5, 1, 2, 3, 4]
how to rotate an array, IN this function first argument - array, the second argument is
a number or integer.
def rotLeft(a, d):
data = a
n = d
get = data[n:len(data)]
remains = data[0:n]
data.clear()
for i in get:
data.append(i)
for x in remains:
data.append(x)
return data
This is rotating the array to the right by k steps, where k is non-negative
for (int i = 0; i < k; i++) {
for (int j = nums.length - 1; j > 0; j--) {
int temp = nums[j];
nums[j] = nums[j - 1];
nums[j - 1] = temp;
}
}
return nums;
if (k > arr.length) {
k = k % arr.length;
}
int n = arr.length - k;
int count = 0;
outer:
for (int i = arr.length - 1; i >= n; i--) {
int temp = arr[i];
inner:
for (int j = i - 1; j >= 0; j--) {
arr[j + 1] = arr[j];
if (j == 0) {
int temp2 = arr[j];
arr[j] = temp;
i = arr.length;
count++;
if (count == k) {
break outer;
}
}
}
}
Here I have solved the same problem in go.
Try to run in go playground...
sample code.
func rotate(a []int, k int) {
for j := 0; j < k ; j++ {
temp := a[len(a)-1]
for i := len(a) - 1; i > 0; i-- {
a[i] = a[i-1]
}
a[0] = temp
}
}
If you are looking for the soltuion of Codility - Cyclic Rotation Problem then, here is the JavaScript code which gave 100% for me.
function solution(A, K) {
const L = A.length - (K % A.length); // to get the rotation length value below array length (since rotation of product of array length gives same array)
const A1 = A.slice(L); // last part of array which need to be get to front after L times rotation
const A2 = A.slice(0, L); // part which rotate L times to right side
const Result = [...A1, ...A2]; // reverse and join both array by spreading
return Result;
}
Rotate an array of n elements to the right by k steps.
For instance, with n = 7 and k = 3, the array [1,2,3,4,5,6,7] is rotated to [5,6,7,1,2,3,4].
In JS the solution will be 2 part, in two line:
function rotateArray(array,k){
// remove the rotation part
const splice = [...array].splice(0,k); //... for make a clone;
// add reversed version of the what left
return array.concat(splice.reverse()) from original array.
}

Categories

Resources