i want to make 2 input scanner in java with Lazy singeleton algorithm..
and print it..
the question is : write a java program to get username and password then print it(with Lazy singeleton algorithm)
import java.util.Scanner;
public class lazy1 {
String a1;
String a2;
private static lazy1 Instance;
public synchronized static lazy1 getInstance() {
if (Instance == null) {
Instance = new lazy1();
}
return Instance;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("uesrname");
String a1 = sc.nextLine();
System.out.println("password");
String a2 = sc.nextLine();
System.out.println("username : "+ a1);
System.out.println("password : "+ a2);
}
}
lazy singletons are completely useless*. The aim is, presumably, that the singleton is not 'initialized' or 'takes up memory'. But, good news! It won't. Not until some code touches the singleton class, at which point, well, you needed that initialization anyway. Thus:
public class Lazy1 {
private static final Lazy1 INSTANCE = new Lazy1();
private Lazy1() {} // prevent instantiation by anybody else
public static Lazy1 getInstance() { return INSTANCE; }
}
Does what you want: It is simpler, not buggy, and fast. In contrast to your take, which is quite slow (a synchronized lock every time, even on hour 100, after a million calls to getinstance. However, remove the synchronized and you end up in a buggy scenario. You can try to get around that in turn with volatiles and double locking, but now you have quite complicated code that is almost impossible to test, and which still cannot outperform the fast locking that the classloader itself gives you).
You may think this is non-lazy, but that's false. Try it: print something in that constructor and observe when it prints. It'll print only when the first getInstance() is ever invoked.
Given that it is a singleton, if you need some property (such as 'a scanner') to operate, you have only two options:
The singleton is in an invalid state until it is initialized
All methods that need this state check if the state is valid and throw if it is not:
public class Lazy1 {
private static final Lazy1 INSTANCE = new Lazy1();
private Lazy1() {} // prevent instantiation by anybody else
public static Lazy1 getInstance() { return INSTANCE; }
private Scanner scanner;
public void menu() {
if (scanner == null) throw new IllegalStateException("Uninitialized");
// ....
}
public void init(Scanner s) {
this.scanner = s;
}
}
Every method that needs the 'scanner state' should first check, then throw.
The singleton doesn't have state. Instead, its methods take the required state as parameter
Your Lazy1 doesn't have, say, public void menu(). It has public void menu(Scanner s) {} - every time any code calls it, it passes scanner along.
*) There is actually a point, but only if some code refers to the Lazy1 class without getting the singleton. If you're doing that, you probably need to fix your code; that'd be rather weird.
Related
I've seen this question asked in several ways, but the code is usually specific to the user, and I get lost a little. If I'm missing a nice clear and simple explanation, I'm sorry! I just need to understand this concept, and I've gotten lost on the repeats that I've seen. So I've simplified my own problem as much as I possibly can, to get at the root of the issue.
The goal is to have a main class that I ask for variables, and then have those user-inputted variables assessed by a method in a separate class, with a message returned depending on what the variables are.
import java.io.*;
public class MainClass {
public static void main(String[] args) {
InputStreamReader input = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(input);
String A;
String B;
try {
System.out.println("Is A present?");
A = reader.readLine();
System.out.println("Is B present?");
B = reader.readLine();
Assess test = new Assess();
} catch (IOException e){
System.out.println("Error reading from user");
}
}
}
And the method I'm trying to use is:
public class Assess extends MainClass {
public static void main(String[] args) {
String A = MainClass.A;
String B = MainClass.B;
if ((A.compareToIgnoreCase("yes")==0) &&
((B.compareToIgnoreCase("yes")==0) | (B.compareToIgnoreCase("maybe")==0)))
{
System.out.println("Success!");
}
else {
System.out.println ("Failure");
}
}
}
I recognize that I'm not properly asking for the output, but I can't even get there and figure out what the heck I'm doing there until I get the thing to compile at all, and I can't do THAT until I figure out how to properly pass values between classes. I know there's fancy ways of doing it, such as with arrays. I'm looking for the conceptually simplest way of sending a variable inputted from inside one class to another class; I need to understand the basic concept here, and I know this is super elementary but I'm just being dumb, and reading what might be duplicate questions hasn't helped.
I know how to do it if the variable is static and declared globally at the beginning, but not how to send it from within the subclass (I know it's impossible to send directly from the subclass...right? I have to set it somehow, and then pull that set value into the other class).
In order to pass variables to an object you have either two options
Constructor - will pass parameter when creating the object
Mutator method - will pass parameters when you call the method
For example in your Main class:
Assess assess = new Assess(A, B);
Or:
Assess assess = new Assess();
assess.setA(A);
assess.setB(B);
In your Assess class you have to add a constructor method
public Assess(String A, String B)
Or setter methods
public void setA(String A)
public void setB(String B)
Also, Assess class should not extend the main class and contain a static main method, it has nothing to do with the main class.
Below there is a code example!
Assess.java
public class Assess {
private a;
private b;
public Assess(String a, String b) {
this.a = a;
this.b = b;
}
public boolean check() {
if ((A.compareToIgnoreCase("yes")==0) &&
((B.compareToIgnoreCase("yes")==0) ||
(B.compareToIgnoreCase("maybe")==0)))
{
System.out.println("Success!");
return true;
} else {
System.out.println ("Failure");
return false;
}
MainClass .java
public class MainClass {
public static void main(String[] args) {
InputStreamReader input = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(input);
String A;
String B;
try {
System.out.println("Is A present?");
A = reader.readLine();
System.out.println("Is B present?");
B = reader.readLine();
Assess test = new Assess(A, B);
boolean isBothPresent = test.check();
// ................
} catch (IOException e){
System.out.println("Error reading from user");
}
}
I think what you're looking for are method parameters.
In a method definition, you define the method name and the parameters it takes. If you have a method assess that takes a string and returns an integer, for example, you would write:
public int assess(String valueToAssess)
and follow it with code to do whatever you wanted with valueToAssess to determine what integer you wanted to return. When you had decided that i was the int to return, you would put the statement
return i;
into the method; that terminates the method and returns that value to the caller.
The caller obtains the string to be assesed, then calls the method and passes in that string. So it's more of a push than a pull, if you see what I mean.
...
String a = reader.readLine();
int answer = assess(a);
System.out.println("I've decided the answer is " + answer);
Is that what you're looking for?
A subclass will have access to the public members of the superclass. If you want to access a member using {class}.{member} (i.e. MainClass.A) it needs to be statically declared outside of a method.
public class MainClass {
public static String A;
public static String B;
...
}
public class Subclass {
public static void main(String[] args) {
// You can access MainClass.A and MainClass.B here
}
}
Likely a better option is to create a class that has these two Strings as objects that can be manipulated then passed in to the Assess class
public class MainClass {
public String A;
public String B;
public static void main(String[] args) {
// Manipulate A, B, assign values, etc.
Assess assessObject = new Assess(A, B);
if (assessObject.isValidInput()) {
System.out.println("Success!");
} else {
System.out.println("Success!");
}
}
}
public class Assess {
String response1;
String response2;
public Assess (String A, String B) {
response1 = A;
response2 = B;
}
public boolean isValidInput() {
// Put your success/fail logic here
return (response1.compareToIgnoreCase("yes") == 0);
}
}
First you don't need inheritance. Have one class your main class contain main take the main out of Assess class. Create a constructor or setter methods to set the variables in the Assess class.
For instance.
public class MainClass
{
public static void main(String[] Args)
{
Assess ns = new Assess( );
ns.setterMethod(variable to set);
}
}
I'm not 100% sure of your problem, but it sounds like you just need to access variables that exist in one class from a subclass. There are several ways...
You can make them public static variables and reference them as you show in your Assess class. However, they are in the wrong location in MainClass use
public static String A, B;
You can make those variables either public or protected in the parent class (MainClass in your example). Public is NOT recommended as you would not know who or what modified them. You would reference these from the sub-class as if present in the sub-class.
public String A, B; // Bad practice, who modified these?
protected String A, B;
The method that might elicit the least debate is to make them private members and use "accessors" (getters and setters). This makes them accessible programmatically which lets you set breakpoints to catch the culprit that is modifying them, and also let you implement many patterns, such as observer, etc., so that modification of these can invoke services as needed. If "A" were the path to a log file, changing its value could also cause the old log to close and the new one to be opened - just by changing the name of the file.
private String A, B;
public setA(String newValue) {
A = newValue;
}
public String getA() {
return A;
}
BUT ...
Your question says "send to the subclass", but confounded by your knowing how to do this using global variables. I would say that the simplest way is to provide the values with the constructor, effectively injecting the values.
There are other ways, however, your example shows the assessment performed by the constructor. If your Assess class had a separate method to perform the assessment, you would just call that with the variables as arguments.
Your example is confusing since both classes have main methods and the child class does the assessing - I would think you would want the opposite - Have MainClass extend Assess, making "MainClass an Assess'or", let main assign the Strings to Assess' values (or pass them as arguments) to the parent class' "assess" method ("super" added for clarity):
super.setA(local_a);
super.setB(local_b);
super.assess();
or
super.assess(A, B);
It's a common practice to encapsulate code that often changes. In fact, it is often in the form of using an object to delegate the varying logic to. A sample would be the following:
public class SampleClass {
Object obj = new ObjectWithVaryingMethod();
public SampleClass(Object obj){
this.obj=obj;
}
public String getString(){
return obj.toString();
}
public static void main(String args[]){
SampleClass sampleClass=new SampleClass(new ObjectWithVaryingMethod());
System.out.println(sampleClass.getString());
}
}
class ObjectWithVaryingMethod{
#Override
public String toString(){
return "Hi";
}
}
Can you suggest what problems I may encounter when "encapsulation" is done on what doesn't vary? I find it to be a good coding conduct when the main class itself is the one that is often subject to change or improvement. A sample would be the following. In this second case, retrieving "Hi", which is the part that doesn't vary, was "encapsulated" in another class.
public class SampleVaryingClass {
public static void main(String args[]) {
//here I may opt to print getHi's value on sysout or on a dialog
System.out.println(ObjectWithNonVaryingMethod.getHi());
}
}
In a completely different class...
public class ObjectWithNonVaryingMethod {
private static final String hi = "Hi";
//"Hi" should always be returned
public static String getHi() {
return hi;
}
}
Can you give some pro's and con's on doing this?
Both code cannot be compared each other. One is static, another one isn't. I hope you understand the concept of encapsulating the object in the first code. Here is the pros and cons for the second one. Remember that static is "generally" bad, and do not support concurrency by default.
pros:
With getHi, you are keeping the string field private, meaning that it cannot be set from other source
Say that you need to do setHi from other source, you can add several guard clauses for it. This is called defensive programming.
public static setHi(String input){
if(input == null) { input = ""; } // can throw exception instead
hi = input;
}
cons:
It is static, needless to say
You don't get any advantage other than guard clauses. If your class is not static, you can swap it with other class implementing same interface, or other class inherited from that class.
What is the preferred way to work with Singleton class in multithreaded environment?
Suppose if I have 3 threads, and all of them try to access getInstance() method of singleton class at the same time -
What would happen if no synchronization is maintained?
Is it good practice to use synchronized getInstance() method or use synchronized block inside getInstance().
Please advise if there is any other way out.
If you're talking about threadsafe, lazy initialization of the singleton, here is a cool code pattern to use that accomplishes 100% threadsafe lazy initialization without any synchronization code:
public class MySingleton {
private static class MyWrapper {
static MySingleton INSTANCE = new MySingleton();
}
private MySingleton () {}
public static MySingleton getInstance() {
return MyWrapper.INSTANCE;
}
}
This will instantiate the singleton only when getInstance() is called, and it's 100% threadsafe! It's a classic.
It works because the class loader has its own synchronization for handling static initialization of classes: You are guaranteed that all static initialization has completed before the class is used, and in this code the class is only used within the getInstance() method, so that's when the class loaded loads the inner class.
As an aside, I look forward to the day when a #Singleton annotation exists that handles such issues.
Edited:
A particular disbeliever has claimed that the wrapper class "does nothing". Here is proof that it does matter, albeit under special circumstances.
The basic difference is that with the wrapper class version, the singleton instance is created when the wrapper class is loaded, which when the first call the getInstance() is made, but with the non-wrapped version - ie a simple static initialization - the instance is created when the main class is loaded.
If you have only simple invocation of the getInstance() method, then there is almost no difference - the difference would be that all other sttic initialization would have completed before the instance is created when using the wrapped version, but this is easily dealt with by simply having the static instance variable listed last in the source.
However, if you are loading the class by name, the story is quite different. Invoking Class.forName(className) on a class cuasing static initialization to occur, so if the singleton class to be used is a property of your server, with the simple version the static instance will be created when Class.forName() is called, not when getInstance() is called. I admit this is a little contrived, as you need to use reflection to get the instance, but nevertheless here's some complete working code that demonstrates my contention (each of the following classes is a top-level class):
public abstract class BaseSingleton {
private long createdAt = System.currentTimeMillis();
public String toString() {
return getClass().getSimpleName() + " was created " + (System.currentTimeMillis() - createdAt) + " ms ago";
}
}
public class EagerSingleton extends BaseSingleton {
private static final EagerSingleton INSTANCE = new EagerSingleton();
public static EagerSingleton getInstance() {
return INSTANCE;
}
}
public class LazySingleton extends BaseSingleton {
private static class Loader {
static final LazySingleton INSTANCE = new LazySingleton();
}
public static LazySingleton getInstance() {
return Loader.INSTANCE;
}
}
And the main:
public static void main(String[] args) throws Exception {
// Load the class - assume the name comes from a system property etc
Class<? extends BaseSingleton> lazyClazz = (Class<? extends BaseSingleton>) Class.forName("com.mypackage.LazySingleton");
Class<? extends BaseSingleton> eagerClazz = (Class<? extends BaseSingleton>) Class.forName("com.mypackage.EagerSingleton");
Thread.sleep(1000); // Introduce some delay between loading class and calling getInstance()
// Invoke the getInstace method on the class
BaseSingleton lazySingleton = (BaseSingleton) lazyClazz.getMethod("getInstance").invoke(lazyClazz);
BaseSingleton eagerSingleton = (BaseSingleton) eagerClazz.getMethod("getInstance").invoke(eagerClazz);
System.out.println(lazySingleton);
System.out.println(eagerSingleton);
}
Output:
LazySingleton was created 0 ms ago
EagerSingleton was created 1001 ms ago
As you can see, the non-wrapped, simple implementation is created when Class.forName() is called, which may be before the static initialization is ready to be executed.
The task is non-trivial in theory, given that you want to make it truly thread safe.
A very nice paper on the matter is found # IBM
Just getting the singleton does not need any sync, since it's just a read. So, just synchronize the setting of the Sync would do. Unless two treads try to create the singleton at start up at the same time, then you need to make sure check if the instance is set twice (one outside and one inside the sync) to avoid resetting the instance in a worst case scenario.
Then you might need to take into account how JIT (Just-in-time) compilers handle out-of-order writes. This code will be somewhat near the solution, although won't be 100% thread safe anyway:
public static Singleton getInstance() {
if (instance == null) {
synchronized(Singleton.class) {
Singleton inst = instance;
if (inst == null) {
synchronized(Singleton.class) {
instance = new Singleton();
}
}
}
}
return instance;
}
So, you should perhaps resort to something less lazy:
class Singleton {
private static Singleton instance = new Singleton();
private Singleton() { }
public static Singleton getInstance() {
return instance;
}
}
Or, a bit more bloated, but a more flexible way is to avoid using static singletons and use an injection framework such as Spring to manage instantiation of "singleton-ish" objects (and you can configure lazy initialization).
You need synchronization inside getInstance only if you initialize your singleton lazily. If you could create an instance before the threads are started, you can drop synchronization in the getter, because the reference becomes immutable. Of course if the singleton object itself is mutable, you would need to synchronize its methods which access information that can be changed concurrently.
This question really depends on how and when your instance is created. If your getInstance method lazily initializes:
if(instance == null){
instance = new Instance();
}
return instance
Then you must synchronize or you could end up with multiple instances. This problem is usually treated in talks on Double Checked Locking.
Otherwise if you create a static instance up front
private static Instance INSTANCE = new Instance();
then no synchronization of the getInstance() method is necessary.
The best way as described in effective java is:
public class Singelton {
private static final Singelton singleObject = new Singelton();
public Singelton getInstance(){
return singleObject;
}
}
No need of synchronization.
Nobody uses Enums as suggested in Effective Java?
If you are sure that your java runtime is using the new JMM (Java memory model, probably newer than 5.0), double check lock is just fine, but add a volatile in front of instance. Otherwise, you'd better use static internal class as Bohemian said, or Enum in 'Effective Java' as Florian Salihovic said.
For simplicity, I think using enum class is a better way. We don't need to do any synchronization. Java by construct, always ensure that there is only one constant created, no matter how many threads are trying to access it.
FYI, In some case you need to swap out singleton with other implementation. Then we need to modify class, which is violation of Open Close principal.Problem with singleton is, you can't extend the class because of having private constructor. So, it's a better practice that client is talking via interface.
Implementation of Singleton with enum class and Interface:
Client.java
public class Client{
public static void main(String args[]){
SingletonIface instance = EnumSingleton.INSTANCE;
instance.operationOnInstance("1");
}
}
SingletonIface.java
public interface SingletonIface {
public void operationOnInstance(String newState);
}
EnumSingleton.java
public enum EnumSingleton implements SingletonIface{
INSTANCE;
#Override
public void operationOnInstance(String newState) {
System.out.println("I am Enum based Singleton");
}
}
The Answer is already accepted here, But i would like to share the test to answer your 1st question.
What would happen if no synchronization is maintained?
Here is the SingletonTest class which will be completely disaster when you run in multi Threaded Environment.
/**
* #author MILAN
*/
public class SingletonTest
{
private static final int PROCESSOR_COUNT = Runtime.getRuntime().availableProcessors();
private static final Thread[] THREADS = new Thread[PROCESSOR_COUNT];
private static int instancesCount = 0;
private static SingletonTest instance = null;
/**
* private constructor to prevent Creation of Object from Outside of the
* This class.
*/
private SingletonTest()
{
}
/**
* return the instance only if it does not exist
*/
public static SingletonTest getInstance()
{
if (instance == null)
{
instancesCount++;
instance = new SingletonTest();
}
return instance;
}
/**
* reset instancesCount and instance.
*/
private static void reset()
{
instancesCount = 0;
instance = null;
}
/**
* validate system to run the test
*/
private static void validate()
{
if (SingletonTest.PROCESSOR_COUNT < 2)
{
System.out.print("PROCESSOR_COUNT Must be >= 2 to Run the test.");
System.exit(0);
}
}
public static void main(String... args)
{
validate();
System.out.printf("Summary :: PROCESSOR_COUNT %s, Running Test with %s of Threads. %n", PROCESSOR_COUNT, PROCESSOR_COUNT);
long currentMili = System.currentTimeMillis();
int testCount = 0;
do
{
reset();
for (int i = 0; i < PROCESSOR_COUNT; i++)
THREADS[i] = new Thread(SingletonTest::getInstance);
for (int i = 0; i < PROCESSOR_COUNT; i++)
THREADS[i].start();
for (int i = 0; i < PROCESSOR_COUNT; i++)
try
{
THREADS[i].join();
}
catch (InterruptedException e)
{
e.printStackTrace();
Thread.currentThread().interrupt();
}
testCount++;
}
while (instancesCount <= 1 && testCount < Integer.MAX_VALUE);
System.out.printf("Singleton Pattern is broken after %d try. %nNumber of instances count is %d. %nTest duration %dms", testCount, instancesCount, System.currentTimeMillis() - currentMili);
}
}
Output of the program is clearly shows that you need handle this using getInstance as synchronized or add synchronized lock enclosing new SingletonTest.
Summary :: PROCESSOR_COUNT 32, Running Test with 32 of Threads.
Singleton Pattern is broken after 133 try.
Number of instance count is 30.
Test duration 500ms
What is the difference between ClassName.m() and (new ClassName()).m() m() is a static method.
The difference is that in your second example you are creating an unnecessary object in memory.
It is still calling the same static method for the ClassName class.
It is recommended to use ClassName.m() to avoid unnecessary object creation and to provide context to the developers indicating that a static method is indeed being called.
Three things:
The second has an extra call, which means it might change the outcome. This may be bad, may not, but it is something to consider. See example on how this can work.
The second creates an extra object. That's bad.
The second implies you're calling a method on an object, not on the class itself, which confuses people who read it. That's also bad. See example for how this can be very bad!
Consider the following, reason 1:
class ClassName {
static int nextId;
static int m() { return nextId; }
int id;
ClassName() { id = nextId; nextId++; }
/**
C:\junk>java ClassName
2
2
3
*/
public static void main(String[] args) {
new ClassName();
new ClassName();
System.out.println(ClassName.m());
System.out.println(ClassName.m());
System.out.println((new ClassName()).m());
}
}
Consider the following, adding on to reason 2, as alluded to by #emory:
class ClassName {
// perhaps ClassName has some caching mechanism?
static final List<ClassName> badStructure = new LinkedList<ClassName>();
ClassName() {
// Note this also gives outside threads access to this object
// before it is fully constructed! Generally bad...
badStructure.add(this);
}
public static void main(String[] args) {
ClassName c1 = new ClassName(); // create a ClassName object
c1 = null; // normally it would get GC'd but a ref exist in badStructure! :-(
}
}
Consider the following, reason 3:
class BadSleep implements Runnable {
int i = 0;
public void run() {
while(true) {
i++;
}
}
public static void main(String[] args) throws Exception {
Thread t = new Thread(new BadSleep());
t.start();
// okay t is running - let's pause it for a second
t.sleep(1000); // oh snap! Doesn't pause t, it pauses main! Ugh!
}
}
From an external observer's perspective, there's no difference. Both ways result in a call to the method which can only do the exact same thing in either case. You should never do the second one, though, as it just doesn't make sense to create an object in that case.
If m() is a static method, it's generally correct practice to use ClassName.m() since m() is a method of ClassName, not an object of ClassName.
As far as I understood the "static initialization block" is used to set values of static field if it cannot be done in one line.
But I do not understand why we need a special block for that. For example we declare a field as static (without a value assignment). And then write several lines of the code which generate and assign a value to the above declared static field.
Why do we need this lines in a special block like: static {...}?
The non-static block:
{
// Do Something...
}
Gets called every time an instance of the class is constructed. The static block only gets called once, when the class itself is initialized, no matter how many objects of that type you create.
Example:
public class Test {
static{
System.out.println("Static");
}
{
System.out.println("Non-static block");
}
public static void main(String[] args) {
Test t = new Test();
Test t2 = new Test();
}
}
This prints:
Static
Non-static block
Non-static block
If they weren't in a static initialization block, where would they be? How would you declare a variable which was only meant to be local for the purposes of initialization, and distinguish it from a field? For example, how would you want to write:
public class Foo {
private static final int widgets;
static {
int first = Widgets.getFirstCount();
int second = Widgets.getSecondCount();
// Imagine more complex logic here which really used first/second
widgets = first + second;
}
}
If first and second weren't in a block, they'd look like fields. If they were in a block without static in front of it, that would count as an instance initialization block instead of a static initialization block, so it would be executed once per constructed instance rather than once in total.
Now in this particular case, you could use a static method instead:
public class Foo {
private static final int widgets = getWidgets();
static int getWidgets() {
int first = Widgets.getFirstCount();
int second = Widgets.getSecondCount();
// Imagine more complex logic here which really used first/second
return first + second;
}
}
... but that doesn't work when there are multiple variables you wish to assign within the same block, or none (e.g. if you just want to log something - or maybe initialize a native library).
Here's an example:
private static final HashMap<String, String> MAP = new HashMap<String, String>();
static {
MAP.put("banana", "honey");
MAP.put("peanut butter", "jelly");
MAP.put("rice", "beans");
}
The code in the "static" section(s) will be executed at class load time, before any instances of the class are constructed (and before any static methods are called from elsewhere). That way you can make sure that the class resources are all ready to use.
It's also possible to have non-static initializer blocks. Those act like extensions to the set of constructor methods defined for the class. They look just like static initializer blocks, except the keyword "static" is left off.
It's also useful when you actually don't want to assign the value to anything, such as loading some class only once during runtime.
E.g.
static {
try {
Class.forName("com.example.jdbc.Driver");
} catch (ClassNotFoundException e) {
throw new ExceptionInInitializerError("Cannot load JDBC driver.", e);
}
}
Hey, there's another benefit, you can use it to handle exceptions. Imagine that getStuff() here throws an Exception which really belongs in a catch block:
private static Object stuff = getStuff(); // Won't compile: unhandled exception.
then a static initializer is useful here. You can handle the exception there.
Another example is to do stuff afterwards which can't be done during assigning:
private static Properties config = new Properties();
static {
try {
config.load(Thread.currentThread().getClassLoader().getResourceAsStream("config.properties");
} catch (IOException e) {
throw new ExceptionInInitializerError("Cannot load properties file.", e);
}
}
To come back to the JDBC driver example, any decent JDBC driver itself also makes use of the static initializer to register itself in the DriverManager. Also see this and this answer.
I would say static block is just syntactic sugar. There is nothing you could do with static block and not with anything else.
To re-use some examples posted here.
This piece of code could be re-written without using static initialiser.
Method #1: With static
private static final HashMap<String, String> MAP;
static {
MAP.put("banana", "honey");
MAP.put("peanut butter", "jelly");
MAP.put("rice", "beans");
}
Method #2: Without static
private static final HashMap<String, String> MAP = getMap();
private static HashMap<String, String> getMap()
{
HashMap<String, String> ret = new HashMap<>();
ret.put("banana", "honey");
ret.put("peanut butter", "jelly");
ret.put("rice", "beans");
return ret;
}
There are a few actual reasons that it is required to exist:
initializing static final members whose initialization might throw an exception
initializing static final members with calculated values
People tend to use static {} blocks as a convenient way to initialize things that the class depends on within the runtime as well - such as ensuring that particular class is loaded (e.g., JDBC drivers). That can be done in other ways; however, the two things that I mention above can only be done with a construct like the static {} block.
You can execute bits of code once for a class before an object is constructed in the static blocks.
E.g.
class A {
static int var1 = 6;
static int var2 = 9;
static int var3;
static long var4;
static Date date1;
static Date date2;
static {
date1 = new Date();
for(int cnt = 0; cnt < var2; cnt++){
var3 += var1;
}
System.out.println("End first static init: " + new Date());
}
}
It is a common misconception to think that a static block has only access to static fields. For this I would like to show below piece of code that I quite often use in real-life projects (copied partially from another answer in a slightly different context):
public enum Language {
ENGLISH("eng", "en", "en_GB", "en_US"),
GERMAN("de", "ge"),
CROATIAN("hr", "cro"),
RUSSIAN("ru"),
BELGIAN("be",";-)");
static final private Map<String,Language> ALIAS_MAP = new HashMap<String,Language>();
static {
for (Language l:Language.values()) {
// ignoring the case by normalizing to uppercase
ALIAS_MAP.put(l.name().toUpperCase(),l);
for (String alias:l.aliases) ALIAS_MAP.put(alias.toUpperCase(),l);
}
}
static public boolean has(String value) {
// ignoring the case by normalizing to uppercase
return ALIAS_MAP.containsKey(value.toUpper());
}
static public Language fromString(String value) {
if (value == null) throw new NullPointerException("alias null");
Language l = ALIAS_MAP.get(value);
if (l == null) throw new IllegalArgumentException("Not an alias: "+value);
return l;
}
private List<String> aliases;
private Language(String... aliases) {
this.aliases = Arrays.asList(aliases);
}
}
Here the initializer is used to maintain an index (ALIAS_MAP), to map a set of aliases back to the original enum type. It is intended as an extension to the built-in valueOf method provided by the Enum itself.
As you can see, the static initializer accesses even the private field aliases. It is important to understand that the static block already has access to the Enum value instances (e.g. ENGLISH). This is because the order of initialization and execution in the case of Enum types, just as if the static private fields have been initialized with instances before the static blocks have been called:
The Enum constants which are implicit static fields. This requires the Enum constructor and instance blocks, and instance initialization to occur first as well.
static block and initialization of static fields in the order of occurrence.
This out-of-order initialization (constructor before static block) is important to note. It also happens when we initialize static fields with the instances similarly to a Singleton (simplifications made):
public class Foo {
static { System.out.println("Static Block 1"); }
public static final Foo FOO = new Foo();
static { System.out.println("Static Block 2"); }
public Foo() { System.out.println("Constructor"); }
static public void main(String p[]) {
System.out.println("In Main");
new Foo();
}
}
What we see is the following output:
Static Block 1
Constructor
Static Block 2
In Main
Constructor
Clear is that the static initialization actually can happen before the constructor, and even after:
Simply accessing Foo in the main method, causes the class to be loaded and the static initialization to start. But as part of the Static initialization we again call the constructors for the static fields, after which it resumes static initialization, and completes the constructor called from within the main method. Rather complex situation for which I hope that in normal coding we would not have to deal with.
For more info on this see the book "Effective Java".
So you have a static field (it's also called "class variable" because it belongs to the class rather than to an instance of the class; in other words it's associated with the class rather than with any object) and you want to initialize it. So if you do NOT want to create an instance of this class and you want to manipulate this static field, you can do it in three ways:
1- Just initialize it when you declare the variable:
static int x = 3;
2- Have a static initializing block:
static int x;
static {
x=3;
}
3- Have a class method (static method) that accesses the class variable and initializes it:
this is the alternative to the above static block; you can write a private static method:
public static int x=initializeX();
private static int initializeX(){
return 3;
}
Now why would you use static initializing block instead of static methods?
It's really up to what you need in your program. But you have to know that static initializing block is called once and the only advantage of the class method is that they can be reused later if you need to reinitialize the class variable.
let's say you have a complex array in your program. You initialize it (using for loop for example) and then the values in this array will change throughout the program but then at some point you want to reinitialize it (go back to the initial value). In this case you can call the private static method. In case you do not need in your program to reinitialize the values, you can just use the static block and no need for a static method since you're not gonna use it later in the program.
Note: the static blocks are called in the order they appear in the code.
Example 1:
class A{
public static int a =f();
// this is a static method
private static int f(){
return 3;
}
// this is a static block
static {
a=5;
}
public static void main(String args[]) {
// As I mentioned, you do not need to create an instance of the class to use the class variable
System.out.print(A.a); // this will print 5
}
}
Example 2:
class A{
static {
a=5;
}
public static int a =f();
private static int f(){
return 3;
}
public static void main(String args[]) {
System.out.print(A.a); // this will print 3
}
}
If your static variables need to be set at runtime then a static {...} block is very helpful.
For example, if you need to set the static member to a value which is stored in a config file or database.
Also useful when you want to add values to a static Map member as you can't add these values in the initial member declaration.
It is important to understand that classes are instantiated from java.class.Class during runtime. That is when static blocks are executed, which allows you to execute code without instantiating a class:
public class Main {
private static int myInt;
static {
myInt = 1;
System.out.println("myInt is 1");
}
// needed only to run this class
public static void main(String[] args) {
}
}
The result is myInt is 1 printed to the console.
As supplementary, like #Pointy said
The code in the "static" section(s) will be executed at class load
time, before any instances of the class are constructed (and before
any static methods are called from elsewhere).
It's supposed to add System.loadLibrary("I_am_native_library") into static block.
static{
System.loadLibrary("I_am_a_library");
}
It will guarantee no native method be called before the related library is loaded into memory.
According to loadLibrary from oracle:
If this method is called more than once with the same library name,
the second and subsequent calls are ignored.
So quite unexpectedly, putting System.loadLibrary is not used to avoid library be loaded multi-times.
static block is used for any technology to initialize static data member in dynamic way,or we can say for the dynamic initialization of static data member static block is being used..Because for non static data member initialization we have constructor but we do not have any place where we can dynamically initialize static data member
Eg:-class Solution{
// static int x=10;
static int x;
static{
try{
x=System.out.println();
}
catch(Exception e){}
}
}
class Solution1{
public static void main(String a[]){
System.out.println(Solution.x);
}
}
Now my static int x will initialize dynamically ..Bcoz when compiler will go to Solution.x it will load Solution Class and static block load at class loading time..So we can able to dynamically initialize that static data member..
}
static int B,H;
static boolean flag = true;
static{
Scanner scan = new Scanner(System.in);
B = scan.nextInt();
scan.nextLine();
H = scan.nextInt();
if(B < 0 || H < 0){
flag = false;
System.out.println("java.lang.Exception: Breadth and height must be positive");
}
}