Implementing a cache within a Repository using HashMap question - java

I got this question on an interview and I'm trying to learn from this.
Assuming that this repository is used in a concurrent context with billions of messages in the database.
public class MessageRepository {
public static final Map<String, Message> cache = new HashMap<>();
public Message findMessageById(String id) {
if(cache.containsKey(id)) {
return cache.get(id);
}
Message p = loadMessageFromDb(id);
cache.put(id, p);
return p;
}
Message loadMessageFromDb(String id) {
/* query DB and map row to a Message object */
}
}
What are possible problems with this approach?
One I can think of is HashMap not being a thread safe implementation of Map. Perhaps ConcurrentHashMap would be better for that.
I wasn't sure about any other of the possible answers which were:
1) Class MessageRepository is final meaning it's immutable, so it can't have a modifiable cache.
(AFAIK HashMap is mutable and it's composed into MessageRepository so this wouldn't be an issue).
2) Field cache is final meaning that it's immutable, so it can't be modified by put.
(final doesn't mean immutable so this wouldn't be an issue either)
3) Field cache is static meaning that it will be reset every time an instance of MessageRepository will be built.
(cache will be shared by all instances of MessageRepository so it shouldn't be a problem)
4) HashMap is synchronized, performances may be better without synchronization.
(I think SynchronizedHashMap is the synced implementation)
5) HashMap does not implement evict mechanism out of the box, it may cause memory problems.
(What kind of problems?)

I see two problems with this cache. If loadMessageFromDb() is an expensive operation, then two threads can initiate duplicate calculations. This isn't alleviated even if you use ConcurrentHashMap. A proper implementation of a cache that avoid this would be:
public class MessageRepository {
private static final Map<String, Future<Message>> CACHE = new ConcurrentHashMap<>();
public Message findMessageById(String id) throws ExecutionException, InterruptedException {
Future<Message> messageFuture = CACHE.get(id);
if (null == messageFuture) {
FutureTask<Message> ft = new FutureTask<>(() -> loadMessageFromDb(id));
messageFuture = CACHE.putIfAbsent(id, ft);
if (null == messageFuture) {
messageFuture = ft;
ft.run();
}
}
return messageFuture.get();
}
}
(Taken directly from JCIP By Brian Goetz et. al.)
In the cache above, when a thread starts a computation, it puts the Future into the cache and then patiently waits till the computation finishes. Any thread that comes in with the same id sees that a computation is already ongoing and will again wait on the same future. If two threads call exactly at the same time, putIfAbsent ensures that only one thread is able to initiate the computation.
Java does not have any SynchronizedHashMap class. You should use ConcurrentHashMap. You can do Collections.synchronisedMap(new HashMap<>()) but it has really bad performance.
A problem with the above cache is that it does not evict entries. Java provides LinkedHashMap that can help you create a LRU cache, but it is not synchronised. If you want both functionalities, you should try Guava cache.

Related

Is following code Thread safe

I have a scenario where i have to maintain a Map which can be populated by multiple threads ,each modifying there respective List (unique identifier/key being thread name) and when the list size for a thread exceeds a fixed batch size we have to persist the records in DB.
Sample code below:
private volatile ConcurrentHashMap<String, List<T>> instrumentMap = new ConcurrentHashMap<String, List<T>>();
private ReadWriteLock lock ;
public void addAll(List<T> entityList, String threadName) {
try {
lock.readLock().lock();
List<T> instrumentList = instrumentMap.get(threadName);
if(instrumentList == null) {
instrumentList = new ArrayList<T>(batchSize);
instrumentMap.put(threadName, instrumentList);
}
if(instrumentList.size() >= batchSize -1){
instrumentList.addAll(entityList);
recordSaver.persist(instrumentList);
instrumentList.clear();
} else {
instrumentList.addAll(entityList);
}
} finally {
lock.readLock().unlock();
}
}
There is one more separate thread running after every 2 minutes to persist all the records in Map (to make sure we have something persisted after every 2 minutes and map size does not gets too big) and when it starts it block all other threads (check the readLock and writeLock usawhere writeLock has higher priority)
if(//Some condition) {
Thread.sleep(//2 minutes);
aggregator.getLock().writeLock().lock();
List<T> instrumentList = instrumentMap .values().stream().flatMap(x->x.stream()).collect(Collectors.toList());
if(instrumentList.size() > 0) {
saver.persist(instrumentList);
instrumentMap .values().parallelStream().forEach(x -> x.clear());
aggregator.getLock().writeLock().unlock();
}
This solution is working fine almost for every scenario we tested except sometime we see some of the records went missing i.e. not persisted at all although they were added fine in Map
My question is what is the problem with this code?
Is ConcurrentHashMap not the best solution here?
Does usage of read/write lock has some problem here?
Should i go with sequential processing?
No, it's not thread safe.
The problem is that you are using the read lock of the ReadWriteLock. This doesn't guarantee exclusive access for making updates. You'd need to use the write lock for that.
But you don't really need to use a separate lock at all. You can simply use the ConcurrentHashMap.compute method:
instrumentMap.compute(threadName, (tn, instrumentList) -> {
if (instrumentList == null) {
instrumentList = new ArrayList<>();
}
if(instrumentList.size() >= batchSize -1) {
instrumentList.addAll(entityList);
recordSaver.persist(instrumentList);
instrumentList.clear();
} else {
instrumentList.addAll(entityList);
}
return instrumentList;
});
This allows you to update items in the list whilst also guaranteeing exclusive access to the list for a given key.
I suspect that you could split the compute call into computeIfAbsent (to add the list if one is not there) and then a computeIfPresent (to update/persist the list): the atomicity of these two operations is not necessary here. But there is no real point in splitting them up.
Additionally, instrumentMap almost certainly shouldn't be volatile. Unless you really want to reassign its value (given this code, I doubt that), remove volatile and make it final.
Similarly, non-final locks are questionable too. If you stick with using a lock, make that final too.

Adding or deleting elements concurrently from a Hashmap and achieving synchronization

I am new to Java and concurrency stuff.
The purpose of the assignment was to learn concurrency.
- So when answering this question please keep in mind that I am supposed to use only Hashmap (which is not synchronized by nature) and synchronize it myself. If you provide more knowledge its appreciated but not required.
I declared a hashmap like this:
private HashMap<String, Flight> flights = new HashMap<>();
recordID is the key of the flight to be deleted.
Flight flightObj = flights.get(recordID);
synchronized(flightObj){
Flight deletedFlight = flights.remove(recordID);
editResponse = "Flight with flight ID " + deletedFlight.getFlightID() +" deleted successfully";
return editResponse;
}
Now my doubt: Is it fine to synch on the basis of flightObj?
Doubt 2:
Flight newFlight = new Flight(FlightServerImpl.createFlightID());
flights.put(newFlight.getFlightID(),newFlight);
If I create flightts by using above code and if more than 1 thread try execute this code will there be any data consistency issues ? Why or why not?
Thanks in advance.
To quickly answer you questions:
Both are not okay - you can't remove two different objects in parallel, and you can't add two different objects in parallel.
From java documentation:
If multiple threads access a hash map concurrently, and at least one of the threads modifies the map structurally, it must be synchronized externally. (A structural modification is any operation that adds or deletes one or more mappings; merely changing the value associated with a key that an instance already contains is not a structural modification.) This is typically accomplished by synchronizing on some object that naturally encapsulates the map. If no such object exists, the map should be "wrapped" using the Collections.synchronizedMap method. This is best done at creation time, to prevent accidental unsynchronized access to the map:
So, it's okay for many threads to use get concurrently and even put that replaces an object.
But if you remove or add a new object - you need to synchronize before calling any hashmap function.
In that case you can either do what's suggested in the documentation and use a global lock. But, it seems that since some limited concurrency is still allowed, you could get that concurrency it by using a read/write lock.
You can do the following
class MySynchronizedHashMap<E> implements Collection<E>, Serializable {
private static final long serialVersionUID = 3053995032091335093L;
final Collection<E> c; // Backing Collection
final Object mutex; // Object on which to synchronize
SynchronizedCollection(Collection<E> c) {
this.c = Objects.requireNonNull(c);
mutex = this;
}
public boolean add(E e) {
synchronized (mutex) {return c.add(e);}
}
public boolean remove(Object o) {
synchronized (mutex) {return c.remove(o);}
}
}
MySynchronizedHashMap mshm = new MySynchronizedHashMap<>(new HashMap<String, Flight>());
mshm.add(new Flight());

How to make atomic a nested iterative operation on ConcurrentHashMaps?

I have a ConcurrentHashMap subscriptions that contain another object (sessionCollection) and I need to do the following iterative operation:
subscriptions.values().forEach(sessionCollection ->
sessionCollection.removeAllSubscriptionsOfSession(sessionId));
where sessionCollection.removeAllSubscriptionsOfSession does another iterative operation over a collection (also ConcurrentHashMap) inside sessionCollection:
// inside SessionCollection:
private final ConcurrentHashMap<String, CopyOnWriteArrayList<String>> topicsToSessions =
new ConcurrentHashMap<>();
public void removeAllSubscriptionsOfSession(String sessionId) {
// Remove sessions from all topics on record
topicsToSessions.keySet().forEach(topicSessionKey ->
removeTopicFromSession(sessionId, topicSessionKey));
}
What would be the steps to make this overall atomic operation?
ConcurrentHashMap has batch operations (forEach*()), but they are not atomic with respect to the whole map. The only way to make atomic batch changes on a map is to implement all the necessary synchronization yourself. For instance, by using synchronized blocks explicitly or by creating a wrapper (or an extension) for your map that will take care of synchronization where needed. In this case a simple HashMap will suffice since you have to do synchronization anyway:
public class SubscriptionsRegistry {
private final Map<Integer, SessionCollection> map = new HashMap<>();
public synchronized void removeSubscriptions(Integer sessionId) {
map.values().forEach(...);
}
public synchronized void addSubscription(...) {
...
}
...
}
You'll also want to protect the topics-to-sessions maps (at least their modifiable versions) from leaking outside your SubscriptionsRegistry, so nobody is able to modify them without proper synchronization.

How to use List Class in Java When multithread is needed?

I'm using SpringMVC, and I've got a class AService which acts as a buffer to store a list of String, After the size of list hitting 1000, write all of the queries into database.
#Service
class AService {
List<String> list;
public void addAndInsert(String query) {
list.add(query);
if(list.size() >= 1000) {
writeIntoDatabase(list);
list.clear();
}
}
}
This will works fine when there's only one thread. But as we know that queries can be invoked from different users (that is MultiThread of course.), so how can I guarantee that this works properly:
When the query hit 1000, I'd like to use another thread to do the write-into-database, because this procedure could be long, I don't want the user to wait for something not relevant to there query.
The query can not be lost or duplicated.
Could anyone tell me how can I deal with this scenario, which implementation of List class should I use? Thanks!
There are two parts to my answer:
Synchronization of adding query items to the list
Scheduling the insert of the query data into your database
Just for completeness I will also highlight that you are open to loosing queries if your JVM crashes. You state that queries cannot be lost, but at the minute everything is being held in memory. I assume that you are OK with this.
Synchronizing addition to the list
Whilst a system can be inherently multi-threaded, Spring will only create a singleton of your #Service class, which means that all Threads access the same instance. Therefore we can quite easily synchronize access to member variables of that instance using basic Java functionality.
The JDK does provide some basic synchronized List implementations out of the box. Take a look at Collections.synchronizedList() or CopyOnWriteArrayList for example.
These implementations generally provide synchronization for a single operation on a list e.g add() or get(). They do not provide synchronization across multiple method calls. However basic Java synchronization lets us achieve this:
public void addAndInsert(String query)
{
synchronized(list)
{
list.add(query);
if(list.size() >= 1000)
{
writeIntoDatabase(list);
list.clear();
}
}
}
This code uses the object monitor for your List instance to ensure that all operations on it are synchronized. One Thread's operations on the list must complete before the next's.
Scheduling insert of data into the database
You have said that you would like to use another Thread to insert data into the database. I would suggest that you get familiar with the ExecutorService interface in the java.util.concurrent package. This provides excellent implementations that provide managed pools of Threads to execute tasks. From what you have said, I would suggest that ThreadPoolExecutor is ideal for what you need. It is also imperative that you remember to pass a copy of the data within the list to the other Thread so that your List.clear() operation doesn't interfere with the insert into the database.
So this would leave us with final code looking similar to:
#Service
public class AService
{
private List<String> list;
private ExecutorService executorService;
public void addAndInsert(String query)
{
synchronized(list)
{
list.add(query);
if(list.size() >= 1000)
{
executorService.execute(writeIntoDataBase(new LinkedList<String>(list)));
list.clear();
}
}
}
private Runnable writeIntoDataBase(List<String> list)
{
//TODO - Create your Runnable to write data to the db.
}
}
An ArrayList will do fine, provided all its accesses are synchronized, and you create a copy before passing it to the inserting thread:
#Service
class AService {
private List<String> list = new ArrayList<>(1000);
public synchronized void addAndInsert(String query) {
list.add(query);
if (list.size() >= 1000) {
List<String> copy = new ArrayList<>(list);
writeIntoDatabase(copy);
list.clear();
}
}
}
But if it's critical that the query is not lost, you shouldn't use a buffer, because obviously, if the server crashes when the list contains 999 elements, you'll lose 999 queries.
You can user concurency collection like BlockingQueue. And another thread can get queries from collection and update database.
Building on Robs answer, I assume you want to make sure that inserts into the DB are made for 1000 queries at once. So you can use BlockingQueues (like ArrayBlockingQueue or LinkedBlockingQueue) which handle all synchronization for you. You also get methods like drainTo, which take a specified number of elements out of your blocking queue and return them in another collection that you can use for writeIntoDataBase. As in
BlockingQueue<String> list;
public void addAndInsert(String query) {
list.add(query);
if ( list.size() >= 1000) {
int size = 1000;
final ArrayList<String> toInsert = new ArrayList<String>( 1000);
list.drainTo( toInsert, size);
executorService.execute( new Runnable() {
public void run() {
writeIntoDataBase( toInsert);
}
});
}
}

Java synchronizing based on a parameter (named mutex/lock)

I'm looking for a way to synchronize a method based on the parameter it receives, something like this:
public synchronized void doSomething(name){
//some code
}
I want the method doSomething to be synchronized based on the name parameter like this:
Thread 1: doSomething("a");
Thread 2: doSomething("b");
Thread 3: doSomething("c");
Thread 4: doSomething("a");
Thread 1 , Thread 2 and Thread 3 will execute the code without being synchronized , but Thread 4 will wait until Thread 1 has finished the code because it has the same "a" value.
Thanks
UPDATE
Based on Tudor explanation I think I'm facing another problem:
here is a sample of the new code:
private HashMap locks=new HashMap();
public void doSomething(String name){
locks.put(name,new Object());
synchronized(locks.get(name)) {
// ...
}
locks.remove(name);
}
The reason why I don't populate the locks map is because name can have any value.
Based on the sample above , the problem can appear when adding / deleting values from the hashmap by multiple threads in the same time, since HashMap is not thread-safe.
So my question is if I make the HashMap a ConcurrentHashMap which is thread safe, will the synchronized block stop other threads from accessing locks.get(name) ??
TL;DR:
I use ConcurrentReferenceHashMap from the Spring Framework. Please check the code below.
Although this thread is old, it is still interesting. Therefore, I would like to share my approach with Spring Framework.
What we are trying to implement is called named mutex/lock. As suggested by Tudor's answer, the idea is to have a Map to store the lock name and the lock object. The code will look like below (I copy it from his answer):
Map<String, Object> locks = new HashMap<String, Object>();
locks.put("a", new Object());
locks.put("b", new Object());
However, this approach has 2 drawbacks:
The OP already pointed out the first one: how to synchronize the access to the locks hash map?
How to remove some locks which are not necessary anymore? Otherwise, the locks hash map will keep growing.
The first problem can be solved by using ConcurrentHashMap. For the second problem, we have 2 options: manually check and remove locks from the map, or somehow let the garbage collector knows which locks are no longer used and the GC will remove them. I will go with the second way.
When we use HashMap, or ConcurrentHashMap, it creates strong references. To implement the solution discussed above, weak references should be used instead (to understand what is a strong/weak reference, please refer to this article or this post).
So, I use ConcurrentReferenceHashMap from the Spring Framework. As described in the documentation:
A ConcurrentHashMap that uses soft or weak references for both keys
and values.
This class can be used as an alternative to
Collections.synchronizedMap(new WeakHashMap<K, Reference<V>>()) in
order to support better performance when accessed concurrently. This
implementation follows the same design constraints as
ConcurrentHashMap with the exception that null values and null keys
are supported.
Here is my code. The MutexFactory manages all the locks with <K> is the type of the key.
#Component
public class MutexFactory<K> {
private ConcurrentReferenceHashMap<K, Object> map;
public MutexFactory() {
this.map = new ConcurrentReferenceHashMap<>();
}
public Object getMutex(K key) {
return this.map.compute(key, (k, v) -> v == null ? new Object() : v);
}
}
Usage:
#Autowired
private MutexFactory<String> mutexFactory;
public void doSomething(String name){
synchronized(mutexFactory.getMutex(name)) {
// ...
}
}
Unit test (this test uses the awaitility library for some methods, e.g. await(), atMost(), until()):
public class MutexFactoryTests {
private final int THREAD_COUNT = 16;
#Test
public void singleKeyTest() {
MutexFactory<String> mutexFactory = new MutexFactory<>();
String id = UUID.randomUUID().toString();
final int[] count = {0};
IntStream.range(0, THREAD_COUNT)
.parallel()
.forEach(i -> {
synchronized (mutexFactory.getMutex(id)) {
count[0]++;
}
});
await().atMost(5, TimeUnit.SECONDS)
.until(() -> count[0] == THREAD_COUNT);
Assert.assertEquals(count[0], THREAD_COUNT);
}
}
Use a map to associate strings with lock objects:
Map<String, Object> locks = new HashMap<String, Object>();
locks.put("a", new Object());
locks.put("b", new Object());
// etc.
then:
public void doSomething(String name){
synchronized(locks.get(name)) {
// ...
}
}
The answer of Tudor is fine, but it's static and not scalable. My solution is dynamic and scalable, but it goes with increased complexity in the implementation. The outside world can use this class just like using a Lock, as this class implements the interface. You get an instance of a parameterized lock by the factory method getCanonicalParameterLock.
package lock;
import java.lang.ref.Reference;
import java.lang.ref.WeakReference;
import java.util.Map;
import java.util.WeakHashMap;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public final class ParameterLock implements Lock {
/** Holds a WeakKeyLockPair for each parameter. The mapping may be deleted upon garbage collection
* if the canonical key is not strongly referenced anymore (by the threads using the Lock). */
private static final Map<Object, WeakKeyLockPair> locks = new WeakHashMap<>();
private final Object key;
private final Lock lock;
private ParameterLock (Object key, Lock lock) {
this.key = key;
this.lock = lock;
}
private static final class WeakKeyLockPair {
/** The weakly-referenced parameter. If it were strongly referenced, the entries of
* the lock Map would never be garbage collected, causing a memory leak. */
private final Reference<Object> param;
/** The actual lock object on which threads will synchronize. */
private final Lock lock;
private WeakKeyLockPair (Object param, Lock lock) {
this.param = new WeakReference<>(param);
this.lock = lock;
}
}
public static Lock getCanonicalParameterLock (Object param) {
Object canonical = null;
Lock lock = null;
synchronized (locks) {
WeakKeyLockPair pair = locks.get(param);
if (pair != null) {
canonical = pair.param.get(); // could return null!
}
if (canonical == null) { // no such entry or the reference was cleared in the meantime
canonical = param; // the first thread (the current thread) delivers the new canonical key
pair = new WeakKeyLockPair(canonical, new ReentrantLock());
locks.put(canonical, pair);
}
}
// the canonical key is strongly referenced now...
lock = locks.get(canonical).lock; // ...so this is guaranteed not to return null
// ... but the key must be kept strongly referenced after this method returns,
// so wrap it in the Lock implementation, which a thread of course needs
// to be able to synchronize. This enforces a thread to have a strong reference
// to the key, while it isn't aware of it (as this method declares to return a
// Lock rather than a ParameterLock).
return new ParameterLock(canonical, lock);
}
#Override
public void lock() {
lock.lock();
}
#Override
public void lockInterruptibly() throws InterruptedException {
lock.lockInterruptibly();
}
#Override
public boolean tryLock() {
return lock.tryLock();
}
#Override
public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
return lock.tryLock(time, unit);
}
#Override
public void unlock() {
lock.unlock();
}
#Override
public Condition newCondition() {
return lock.newCondition();
}
}
Of course you'd need a canonical key for a given parameter, otherwise threads would not be synchronized as they would be using a different Lock. Canonicalization is the equivalent of the internalization of Strings in Tudor's solution. Where String.intern() is itself thread-safe, my 'canonical pool' is not, so I need extra synchronization on the WeakHashMap.
This solution works for any type of Object. However, make sure to implement equals and hashCode correctly in custom classes, because if not, threading issues will arise as multiple threads could be using different Lock objects to synchronize on!
The choice for a WeakHashMap is explained by the ease of memory management it brings. How else could one know that no thread is using a particular Lock anymore? And if this could be known, how could you safely delete the entry out of the Map? You would need to synchronize upon deletion, because you have a race condition between an arriving thread wanting to use the Lock, and the action of deleting the Lock from the Map. All these things are just solved by using weak references, so the VM does the work for you, and this simplifies the implementation a lot. If you inspected the API of WeakReference, you would find that relying on weak references is thread-safe.
Now inspect this test program (you need to run it from inside the ParameterLock class, due to private visibility of some fields):
public static void main(String[] args) {
Runnable run1 = new Runnable() {
#Override
public void run() {
sync(new Integer(5));
System.gc();
}
};
Runnable run2 = new Runnable() {
#Override
public void run() {
sync(new Integer(5));
System.gc();
}
};
Thread t1 = new Thread(run1);
Thread t2 = new Thread(run2);
t1.start();
t2.start();
try {
t1.join();
t2.join();
while (locks.size() != 0) {
System.gc();
System.out.println(locks);
}
System.out.println("FINISHED!");
} catch (InterruptedException ex) {
// those threads won't be interrupted
}
}
private static void sync (Object param) {
Lock lock = ParameterLock.getCanonicalParameterLock(param);
lock.lock();
try {
System.out.println("Thread="+Thread.currentThread().getName()+", lock=" + ((ParameterLock) lock).lock);
// do some work while having the lock
} finally {
lock.unlock();
}
}
Chances are very high that you would see that both threads are using the same lock object, and so they are synchronized. Example output:
Thread=Thread-0, lock=java.util.concurrent.locks.ReentrantLock#8965fb[Locked by thread Thread-0]
Thread=Thread-1, lock=java.util.concurrent.locks.ReentrantLock#8965fb[Locked by thread Thread-1]
FINISHED!
However, with some chance it might be that the 2 threads do not overlap in execution, and therefore it is not required that they use the same lock. You could easily enforce this behavior in debugging mode by setting breakpoints at the right locations, forcing the first or second thread to stop wherever necessary. You will also notice that after the Garbage Collection on the main thread, the WeakHashMap will be cleared, which is of course correct, as the main thread waited for both worker threads to finish their job by calling Thread.join() before calling the garbage collector. This indeed means that no strong reference to the (Parameter)Lock can exist anymore inside a worker thread, so the reference can be cleared from the weak hashmap. If another thread now wants to synchronize on the same parameter, a new Lock will be created in the synchronized part in getCanonicalParameterLock.
Now repeat the test with any pair that has the same canonical representation (= they are equal, so a.equals(b)), and see that it still works:
sync("a");
sync(new String("a"))
sync(new Boolean(true));
sync(new Boolean(true));
etc.
Basically, this class offers you the following functionality:
Parameterized synchronization
Encapsulated memory management
The ability to work with any type of object (under the condition that equals and hashCode is implemented properly)
Implements the Lock interface
This Lock implementation has been tested by modifying an ArrayList concurrently with 10 threads iterating 1000 times, doing this: adding 2 items, then deleting the last found list entry by iterating the full list. A lock is requested per iteration, so in total 10*1000 locks will be requested. No ConcurrentModificationException was thrown, and after all worker threads have finished the total amount of items was 10*1000. On every single modification, a lock was requested by calling ParameterLock.getCanonicalParameterLock(new String("a")), so a new parameter object is used to test the correctness of the canonicalization.
Please note that you shouldn't be using String literals and primitive types for parameters. As String literals are automatically interned, they always have a strong reference, and so if the first thread arrives with a String literal for its parameter then the lock pool will never be freed from the entry, which is a memory leak. The same story goes for autoboxing primitives: e.g. Integer has a caching mechanism that will reuse existing Integer objects during the process of autoboxing, also causing a strong reference to exist. Addressing this, however, this is a different story.
Check out this framework. Seems you're looking for something like this.
public class WeatherServiceProxy {
...
private final KeyLockManager lockManager = KeyLockManagers.newManager();
public void updateWeatherData(String cityName, Date samplingTime, float temperature) {
lockManager.executeLocked(cityName, new LockCallback() {
public void doInLock() {
delegate.updateWeatherData(cityName, samplingTime, temperature);
}
});
}
https://code.google.com/p/jkeylockmanager/
I've created a tokenProvider based on the IdMutexProvider of McDowell.
The manager uses a WeakHashMap which takes care of cleaning up unused locks.
You could find my implementation here.
I've found a proper answer through another stackoverflow question: How to acquire a lock by a key
I copied the answer here:
Guava has something like this being released in 13.0; you can get it out of HEAD if you like.
Striped more or less allocates a specific number of locks, and then assigns strings to locks based on their hash code. The API looks more or less like
Striped<Lock> locks = Striped.lock(stripes);
Lock l = locks.get(string);
l.lock();
try {
// do stuff
} finally {
l.unlock();
}
More or less, the controllable number of stripes lets you trade concurrency against memory usage, because allocating a full lock for each string key can get expensive; essentially, you only get lock contention when you get hash collisions, which are (predictably) rare.
Just extending on to Triet Doan's answer, we also need to take care of if the MutexFactory can be used at multiple places, as with currently suggested code we will end up with same MutexFactory at all places of its usage.
For example:-
#Autowired
MutexFactory<CustomObject1> mutexFactory1;
#Autowired
MutexFactory<CustomObject2> mutexFactory2;
Both mutexFactory1 & mutexFactory2 will refer to the same instance of factory even if their type differs, this is due to the fact that a single instance of MutexFactory is created by spring during application startup and same is used for both mutexFactory1 & mutexFactory2.
So here is the extra Scope annotation that needs to be put in to avoid above case-
#Component
#Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class MutexFactory<K> {
private ConcurrentReferenceHashMap<K, Object> map;
public MutexFactory() {
this.map = new ConcurrentReferenceHashMap<>();
}
public Object getMutex(K key) {
return this.map.compute(key, (k, v) -> v == null ? new Object() : v);
}
}
I've used a cache to store lock objects. The my cache will expire objects after a period, which really only needs to be longer that the time it takes the synchronized process to run
`
import com.google.common.cache.Cache;
import com.google.common.cache.CacheBuilder;
...
private final Cache<String, Object> mediapackageLockCache = CacheBuilder.newBuilder().expireAfterWrite(DEFAULT_CACHE_EXPIRE, TimeUnit.SECONDS).build();
...
public void doSomething(foo) {
Object lock = mediapackageLockCache.getIfPresent(foo.toSting());
if (lock == null) {
lock = new Object();
mediapackageLockCache.put(foo.toString(), lock);
}
synchronized(lock) {
// execute code on foo
...
}
}
`
I have a much simpler, scalable implementation akin to #timmons post taking advantage of guavas LoadingCache with weakValues. You will want to read the help files on "equality" to understand the suggestion I have made.
Define the following weakValued cache.
private final LoadingCache<String,String> syncStrings = CacheBuilder.newBuilder().weakValues().build(new CacheLoader<String, String>() {
public String load(String x) throws ExecutionException {
return new String(x);
}
});
public void doSomething(String x) {
x = syncStrings.get(x);
synchronized(x) {
..... // whatever it is you want to do
}
}
Now! As a result of the JVM, we do not have to worry that the cache is growing too large, it only holds the cached strings as long as necessary and the garbage manager/guava does the heavy lifting.

Categories

Resources