Multithread Binary Semaphore's: Alternating Outputs - java

The goal is to have String of output's consisting of W's, X's ,y's
and z's.
W and X should alternate and W must always be ahead of X.
y and z must alternate with y always ahead of z.
The total of y's and z's must be less than the number of W's at any given point in the output.
My program so far satisfies the first two points but I'm having trouble with the last one. Also, I very new to semaphore's and want to know if the code I've implemented follows good practices. For example, I had originally set the initial value of my binary semaphores to 0,1,2,3 but changed it to 0,1,0,1 in order to satisfy the second condition.
public class BinarySemaphore extends Semaphore{
public BinarySemaphore(int initial) {
value = (initial>0) ? 1 : 0;
}
public synchronized void P() throws InterruptedException {
while (value==0) {
wait();
}
value = 0;
}
public synchronized void V() {
value = 1;
notify();
}
}
public class ProcessW extends App implements Runnable{
public void run() {
while (true) {
try {
Thread.sleep(1 + (int) (Math.random() * 500));
bsX.P();
} catch (InterruptedException e1) {
e1.printStackTrace();
}
System.out.print("W");
bsW.V();
}
}
}
public class ProcessX extends App implements Runnable{
public void run() {
while (true) {
try {
Thread.sleep(1 + (int) (Math.random() * 500));
bsW.P();
} catch (InterruptedException e1) {
e1.printStackTrace();
}
System.out.print("X");
bsX.V();
}
}
}
public class ProcessY extends App implements Runnable{
public void run() {
while (true) {
try {
Thread.sleep(1 + (int) (Math.random() * 800));
bsZ.P();
} catch (InterruptedException e1) {
e1.printStackTrace();
}
System.out.print("y");
bsY.V();
}
}
}
public class ProcessZ extends App implements Runnable{
public void run() {
while (true) {
try {
Thread.sleep(1 + (int) (Math.random() * 800));
bsY.P();
} catch (InterruptedException e1) {
e1.printStackTrace();
}
System.out.print("z");
bsZ.V();
}
}
}
public class App {
protected static final BinarySemaphore bsW = new BinarySemaphore(
0);
protected static final BinarySemaphore bsX = new BinarySemaphore(
1);
protected static final BinarySemaphore bsY = new BinarySemaphore(
0);
protected static final BinarySemaphore bsZ = new BinarySemaphore(
1);
public static void main(String[] args) throws Exception {
Thread W = new Thread(new ProcessW());
Thread X = new Thread(new ProcessX());
Thread Y = new Thread(new ProcessY());
Thread Z = new Thread(new ProcessZ());
W.start();
X.start();
Y.start();
Z.start();
Thread.sleep(3000);
System.out.println("");
System.exit(0);
}
}
Here is an example of what my program is currently outputting:
WXWyzXWXWXyzyWXWXzyzWXyzWXyzWX

Your goal is not defined very well because you didn't write what means are you required to use to achieve the goal. For instance, a program that always prints "WXyzWX" satisfies your question. But I'll assume you specifically want to use four threads each printing its own letter, and you want to use Semaphores for this.
Semaphores are used to manage a number of "permissions" between different threads. A thread can semaphore.acquire() a permission and semaphore.release() it after doing its job. If no permissions are available at the moment of calling acquire(), the thread waits until some other thread releases a permission. See documentation for details.
You can use Semaphores for your purpose, but before that I have to explain what "fairness" means in terms of multithreading. By default, the Semaphore (and all other Java concurrent stuff) is "unfair". This means that when a permission is released, it will be given to any of the threads that are waiting for one, considering the overall performance first. On the other hand, a "fair" Semaphore will always give a newly available permission to the thread that has been waiting for one for the longest time. This practically orders the threads as if in a queue. In general, fair structures work slower, but in our case this fairness is very useful.
Now to the idea. You can think of your letter ordering in a following way: to write X, a thread needs a permission that will only be available to it after another thread writes W, and then to write W you will need a permission from X thread. So you can use a semaphore for these two threads, with each thread acquiring and releasing a permission from the semaphore before and after printing the letter. And its fairness guarantees that W and X will always be alternating (don't forget that by default semaphores are unfair, you have to specify a flag in its constructor in order to make it fair). You should also make sure which thread acquires the permission first, or else you will get X always ahead of W.
You can make a similar trick to alternate y and z, but now you have to guarantee your third condition. This is also doable using a semaphore: to write a y or a z, you need a permission that can only be acquired after some W-s were written. I'm going to make you think this one through by yourself. Maybe a nice idea would be to randomly decide whether to release a permission or not, but no details here :)
I must mention that this is by far not the only way to accomplish your task, and also semaphores may be not the best tool to use in here. (I don't think a specific best one exists though.)
And now some extra comments on your code:
What exactly is your purpose of extending the java Semaphore? You never use any of its methods. You can just delete that 'extends' if you want to use this code.
To generate a random value from 0 to N, there is a nextInt(N) method in java.util.Random class. It suits your purposes better.
InterruptedException is one of the few ones that can be safely ignored most of the times (unless you know what it means and want to use it). I mention it because in case it is thrown, your output is going to be mixed up with letters and exceptions.
You simply create a thread, start it and then never access it. In this case, you can simplify your lines to new Thread(new ProcessW()).start() without even creating a variable.
P() and V() are terrible names for methods - I can barely understand what they are supposed to do.
What is the purpose of your BinarySemaphore fields in App class being protected? Did you mean private?
You're stopping all of your threads by calling System.exit(0). This way you cannot make a difference which threads to stop and which not to, as well as being unable to do anything after stopping the threads. A simple solution would be to create a volatile boolean isRunning = true; visible to all threads (do you know what volatile is?), replace while(true) to while(isRunning) and instead of calling System.exit() just do isRunning = false. Or else use the interruption mechanism (again, if you know what it is).

Related

Variable 'runner' is not updated inside loop

Like this, I have two thread. The SleepRunner thread add some random numbers to a list then change flag to true and sleep. The main thread wait SleepRunner thread until the flag in SleepRunner object change from false to true then main thread will interrupte SleepRunner thread and the program will end.
But the question is, when the while loop is no body code in main thread, the variable 'runner' is not updated inside loop in other words The program is not over after SleepRunner thread change flag from false to true. So I tried to use debug tools in idea, but the program ended smoothly. And If I write some code, like System.out.println() or Thread.sleep(1) in while loop body at main thread, the program ended successfully too. it's too incredible! Does anyone know why this happens? Thanks.
public class Test1 {
public static void main(String[] args) {
SleepRunner runner = new SleepRunner();
Thread thread = new Thread(runner);
thread.start();
while(!(runner.isFlag())){
/*try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}*/
}
System.out.println("END");
thread.interrupt();
}
}
public class SleepRunner implements Runnable {
private boolean flag = false;
public boolean isFlag() {
return flag;
}
#Override
public void run() {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < 100; i++) {
try {
Thread.sleep((long) (Math.random() * 200));
}
catch (InterruptedException e) {
System.out.println("Interrupted");
}
int num = (int) (Math.random() * 100);
System.out.println(Thread.currentThread().getName() + " " + num);
list.add(num);
}
flag = true;
System.out.println("30 Seconds");
try {
Thread.sleep(30000);
}
catch (InterruptedException e) {
System.out.println("Interrupted in 30 seconds");
}
System.out.println("sleep runner thread end");
}
}
You've violated the java memory model.
Here's how the JMM works*:
Each thread, whenever any field (from any object) is read or updated, flips a coin. On heads, it will make a copy and update/read from that. On tails, it won't. Your job is to ensure your code functions correctly regardless of how the coin lands, and you can't force the coinflip in a unit test. The coin need not be 'fair'. The coin's behaviour depends on the music playing in your music player, the whims of a toddler, and the phase of the moon. (In other words, any update/read may be done to a local cache copy, or not, up to the java implementation).
You may safely conclude that the only way to do it correctly, is to ensure the thread never flips that coin.
The way to accomplish that is to establish so-called 'comes before' relationships. Establishing them is done primarily by using synchronization primitives, or by calling methods that use synchronization primitives. For example, if I do this:
thread X:
synchronized(x) {
x.foo();
System.out.println(shared.y);
shared.y = 10;
}
thread Y:
synchronized(x) {
x.foo();
System.out.println(shared.y);
shared.y = 20;
}
then you've established a relationship: code block A comes before code block B, or vice versa, but you've at least established that they must run in order.
As a consequence, this will print either 0 10 or 0 20, guaranteed. Without the synchronized block, it can legally print 0 0 as well. All 3 results would be an acceptable result (the java lang spec says it's okay, and any bugs filed that you think this makes no sense would be disregarded as 'working as intended').
volatile can also be used, but volatile is quite limited.
Generally, because this cannot be adequately tested, there are only 3 ways to do threading properly in java:
'in the large': Use a webserver or other app framework that takes care of the multithreading. You don't write the psv main() method, that framework does, and all you write are 'handlers'. None of your handlers touch any shared data at all. The handlers either don't share data, or share it via a bus designed to do it right, such as a DB in serializable transaction isolation mode, or rabbitmq or some other message bus.
'in the small': Use fork/join to parallellize a giant task. The handler for the task cannot, of course, use any shared data.
read Concurrency in Practice (the book), prefer using the classes in the java.util.concurrent package, and in general be a guru about how this stuff works, because doing threading any other way is likely to result in you programming bugs which your tests probably won't catch, but will either blow up at production time, or will result in no actual multithreading (e.g. if you overzealously synchronize everything, you end up having all cores except one core just waiting around, and your code will actually run way slower than if it was just single threaded).
*) The full explanation is about a book's worth. I'm just giving you oversimplified highlights, as this is merely an SO answer.

Multi-threading program to print numbers from 1 to 50?

im trying to write a program in which two threads are created and the output should be like 1st thread prints 1 and the next thread prints 2 ,1st thread again prints 3 and so on. im a beginner so pls help me clearly. i thought thread share the same memory so they will share the i variable and print accordingly. but in output i get like thread1: 1, thread2 : 1, thread1: 2, thread2 : 2 nd so on. pls help. here is my code
class me extends Thread
{
public int name,i;
public void run()
{
for(i=1;i<=50;i++)
{
System.out.println("Thread" + name + " : " + i);
try
{
sleep(1000);
}
catch(Exception e)
{
System.out.println("some problem");
}
}
}
}
public class he
{
public static void main(String[] args)
{
me a=new me();
me b=new me();
a.name=1;
b.name=2;
a.start();
b.start();
}
}
First off you should read this http://www.oracle.com/technetwork/java/codeconventions-135099.html.
Secondly the class member variables are not shared memory. You need to explicitly pass an object (such as the counter) to both objects, such that it becomes shared. However, this will still not be enough. The shared memory can be cached by the threads so you will have race-conditions. To solve this you will need to use a Lock or use an AtomicInteger
It seems what you want to do is:
Write all numbers from 1 to 50 to System.out
without any number being printed multiple times
with the numbers being printed in order
Have this execution be done by two concurrent threads
First, let's look at what is happening in your code: Each number is printed twice. The reason for this is that i is an instance variable of me, your Thread. So each Thread has its own i, i.e., they do not share the value.
To make the two threads share the same value, we need to pass the same value when constructing me. Now, doing so with the primitive int won't help us much, because by passing an int we are not passing a reference, hence the two threads will still work on independent memory locations.
Let us define a new class, Value which holds the integer for us: (Edit: The same could also be achieved by passing an array int[], which also holds the reference to the memory location of its content)
class Value{
int i = 1;
}
Now, main can instantiate one object of type Value and pass the reference to it to both threads. This way, they can access the same memory location.
class Me extends Thread {
final Value v;
public Me(Value v){
this.v = v;
}
public void run(){
for(; v.i < 50; v.i++){
// ...
}
public static void main(){
Value valueInstance = new Value();
Me a = new Me(valueInstance);
Me b = new Me(valueInstance);
}
}
Now i isn't printed twice each time. However, you'll notice that the behavior is still not as desired. This is because the operations are interleaved: a may read i, let's say, the value is 5. Next, b increments the value of i, and stores the new value. i is now 6. However, a did still read the old value, 5, and will print 5 again, even though b just printed 5.
To solve this, we must lock the instance v, i.e., the object of type Value. Java provides the keyword synchronized, which will hold a lock during the execution of all code inside the synchronized block. However, if you simply put synchronize in your method, you still won't get what you desire. Assuming you write:
public void run(){ synchronized(v) {
for(; v.i < 50; v.i++) {
// ...
}}
Your first thread will acquire the lock, but never release it until the entire loop has been executed (which is when i has the value 50). Hence, you must release the lock somehow when it is safe to do so. Well... the only code in your run method that does not depend on i (and hence does not need to be locking) is sleep, which luckily also is where the thread spends the most time in.
Since everything is in the loop body, a simple synchronized block won't do. We can use Semaphore to acquire a lock. So, we create a Semaphore instance in the main method, and, similar to v, pass it to both threads. We can then acquire and release the lock on the Semaphore to let both threads have the chance to get the resource, while guaranteeing safety.
Here's the code that will do the trick:
public class Me extends Thread {
public int name;
final Value v;
final Semaphore lock;
public Me(Value v, Semaphore lock) {
this.v = v;
this.lock = lock;
}
public void run() {
try {
lock.acquire();
while (v.i <= 50) {
System.out.println("Thread" + name + " : " + v.i);
v.i++;
lock.release();
sleep(100);
lock.acquire();
}
lock.release();
} catch (Exception e) {
System.out.println("some problem");
}
}
public static void main(String[] args) {
Value v = new Value();
Semaphore lock = new Semaphore(1);
Me a = new Me(v, lock);
Me b = new Me(v, lock);
a.name = 1;
b.name = 2;
a.start();
b.start();
}
static class Value {
int i = 1;
}
}
Note: Since we are acquiring the lock at the end of the loop, we must also release it after the loop, or the resource will never be freed. Also, I changed the for-loop to a while loop, because we need to update i before releasing the lock for the first time, or the other thread can again read the same value.
Check the below link for the solution. Using multiple threads we can print the numbers in ascending order
http://cooltekhie.blogspot.in/2017/06/#987628206008590221

why is this thread safe?

Because it always prints out '3'. No synchronization needed? I am testing this simple thing because I am having a trouble in a real multiple thread problem, which isn't good to illustrate the problem, because it's large. This is a simplified version to showcase the situation.
class Test {
public static int count = 0;
class CountThread extends Thread {
public void run()
{
count++;
}
}
public void add(){
CountThread a = new CountThread();
CountThread b = new CountThread();
CountThread c = new CountThread();
a.start();
b.start();
c.start();
try {
a.join();
b.join();
c.join();
} catch (InterruptedException ex) {
ex.printStackTrace();
}
}
public static void main(String[] args) {
Test test = new Test();
System.out.println("START = " + Test.count);
test.add();
System.out.println("END: Account balance = " + Test.count);
}
Because it always prints out '3'. No synchronization needed?
It is not thread safe and you are just getting lucky. If you run this 1000 times, or on different architectures, you will see different output -- i.e. not 3.
I would suggest using AtomicInteger instead of a static field ++ which is not synchronized.
public static AtomicInteger count = new AtomicInteger();
...
public void run() {
count.incrementAndGet();
}
...
Seems to me like count++ is fast enough to finish until you invoke 'run' for the other class. So basically it runs sequential.
But, if this was a real life example, and two different threads were usingCountThread parallelly, then yes, you would have synchronization problem.
To verify that, you can try to print some test output before count++ and after, then you'll see if b.start() is invoking count++ before a.start() finished. Same for c.start().
Consider using AtomicInteger instead, which is way better than synchronizing when possible -
incrementAndGet
public final int incrementAndGet()
Atomically increments by one the current value.
This code is not thread-safe:
public static int count = 0;
class CountThread extends Thread {
public void run()
{
count++;
}
}
You can run this code a million times on one system and it might pass every time. This does not mean is it is thread-safe.
Consider a system where the value in count is copied to multiple processor caches. They all might be updated independently before something forces one of the caches to be copied back to main RAM. Consider that ++ is not an atomic operation. The order of reading and writing of count may cause data to be lost.
The correct way to implement this code (using Java 5 and above):
public static java.util.concurrent.atomic.AtomicInteger count =
new java.util.concurrent.atomic.AtomicInteger();
class CountThread extends Thread {
public void run()
{
count.incrementAndGet();
}
}
It's not thread safe just because the output is right. Creating a thread causes a lot of overhead on the OS side of things, and after that it's just to be expected that that single line of code will be done within a single timeslice. It's not thread safe by any means, just not enough potential conflicts to actually trigger one.
It is not thread safe.
It just happened to be way to short to have measurable chance to show the issue. Consider counting to much higher number (1000000?) in run to increase chance of 2 operations on multiple threads to overlap.
Also make sure your machine is not single core CPU...
To make the class threadsafe either make count volatile to force memory fences between threads, or use AtomicInteger, or rewrite like this (my preference):
class CountThread extends Thread {
private static final Object lock = new Object();
public void run()
{
synchronized(lock) {
count++;
}
}
}

How to correctly use synchronized?

This piece of code:
synchronized (mList) {
if (mList.size() != 0) {
int s = mList.size() - 1;
for (int i = s; i > 0; i -= OFFSET) {
mList.get(i).doDraw(canv);
}
getHead().drawHead(canv);
}
}
Randomly throws AIOOBEs. From what I've read, the synchronized should prevent that, so what am I doing wrong?
Edits:
AIOOBE = Array Index Out Of Bounds Exception
The code's incomplete, cut down to what is needed. But to make you happy, OFFSET is 4, and just imagine that there is a for-loop adding a bit of data at the beginning. And a second thread reading and / or modifying the list.
Edit 2:
I've noticed it happens when the list is being drawn and the current game ends. The draw-thread hasn't drawn all elements when the list is emptied. Is there a way of telling the game to wait with emtying the list untill it's empty?
Edit 3:
I've just noticed that I'm not sure if this is a multi-threading problem. Seems I only have 2 threads, one for calculating and drawing and one for user input.. Gonna have to look into this a bit more than I thought.
What you're doing looks right... but that's all:
It doesn't matter on what object you synchronize, it needn't be the list itself.
What does matter is if all threads always synchronize on the same object, when accessing a shared resource.
Any access to SWING (or another graphic library) must happen in the AWT-Thread.
To your edit:
I've noticed it happens when the list is being drawn and the current game ends. The draw-thread hasn't drawn all elements when the list is emptied. Is there a way of telling the game to wait with emtying the list untill it's empty?
I think you mean "...wait with emptying the list until the drawing has completed." Just synchronize the code doing it on the same lock (i.e., the list itself in your case).
Again: Any access to a shared resource must be protected somehow. It seems like you're using synchronized just here and not where you're emptying the list.
The safe solution is to only allow one thread to create objects, add and remove them from a List after the game has started.
I had problems myself with random AIOOBEs erros and no synchornize could solve it properly plus it was slowing down the response of the user.
My solution, which is now stable and fast (never had an AIOOBEs since) is to make UI thread inform the game thread to create or manipulate an object by setting a flag and coordinates of the touch into the persistent variables.
Since the game thread loops about 60 times per second this proved to be sufficent to pick up the message from the UI thread and do something.
This is a very simple solution and it works great!
My suggestion is to use a BlockingQueue and I think you are looking for this solution also. How you can do it? It is already shown with an example in the javadoc :)
class Producer implements Runnable {
private final BlockingQueue queue;
Producer(BlockingQueue q) { queue = q; }
public void run() {
try {
while (true) { queue.put(produce()); }
} catch (InterruptedException ex) { ... handle ...}
}
Object produce() { ... }
}
class Consumer implements Runnable {
private final BlockingQueue queue;
Consumer(BlockingQueue q) { queue = q; }
public void run() {
try {
while (true) { consume(queue.take()); }
} catch (InterruptedException ex) { ... handle ...}
}
void consume(Object x) { ... }
}
class Setup {
void main() {
BlockingQueue q = new SomeQueueImplementation();
Producer p = new Producer(q);
Consumer c1 = new Consumer(q);
Consumer c2 = new Consumer(q);
new Thread(p).start();
new Thread(c1).start();
new Thread(c2).start();
}
}
The beneficial things for you are, you need not to worry about synchronizing your mList. BlockingQueue offers 10 special method. You can check it in the doc. Few from javadoc:
BlockingQueue methods come in four forms, with different ways of handling operations that cannot be satisfied immediately, but may be satisfied at some point in the future: one throws an exception, the second returns a special value (either null or false, depending on the operation), the third blocks the current thread indefinitely until the operation can succeed, and the fourth blocks for only a given maximum time limit before giving up.
To be in safe side: I am not experienced with android. So not certain whether all java packages are allowed in android. But at least it should be :-S, I wish.
You are getting Index out of Bounds Exception because there are 2 threads that operate on the list and are doing it wrongly.
You should have been synchronizing at another level, in such a way that no other thread can iterate through the list while other thread is modifying it! Only on thread at a time should 'work on' the list.
I guess you have the following situation:
//piece of code that adds some item in the list
synchronized(mList){
mList.add(1, drawableElem);
...
}
and
//code that iterates you list(your code simplified)
synchronized (mList) {
if (mList.size() != 0) {
int s = mList.size() - 1;
for (int i = s; i > 0; i -= OFFSET) {
mList.get(i).doDraw(canv);
}
getHead().drawHead(canv);
}
}
Individually the pieces of code look fine. They seam thread-safe. But 2 individual thread-safe pieces of code might not be thread safe at a higher level!
It's just you would have done the following:
Vector v = new Vector();
if(v.length() == 0){ v.length() itself is thread safe!
v.add("elem"); v.add() itself is also thread safe individually!
}
BUT the compound operation is NOT!
Regards,
Tiberiu

Should you synchronize the run method? Why or why not?

I have always thought that synchronizing the run method in a java class which implements Runnable is redundant. I am trying to figure out why people do this:
public class ThreadedClass implements Runnable{
//other stuff
public synchronized void run(){
while(true)
//do some stuff in a thread
}
}
}
It seems redundant and unnecessary since they are obtaining the object's lock for another thread. Or rather, they are making explicit that only one thread has access to the run() method. But since its the run method, isn't it itself its own thread? Therefore, only it can access itself and it doesn't need a separate locking mechanism?
I found a suggestion online that by synchronizing the run method you could potentially create a de-facto thread queue for instance by doing this:
public void createThreadQueue(){
ThreadedClass a = new ThreadedClass();
new Thread(a, "First one").start();
new Thread(a, "Second one, waiting on the first one").start();
new Thread(a, "Third one, waiting on the other two...").start();
}
I would never do that personally, but it lends to the question of why anyone would synchronize the run method. Any ideas why or why not one should synchronize the run method?
Synchronizing the run() method of a Runnable is completely pointless unless you want to share the Runnable among multiple threads and you want to sequentialize the execution of those threads. Which is basically a contradiction in terms.
There is in theory another much more complicated scenario in which you might want to synchronize the run() method, which again involves sharing the Runnable among multiple threads but also makes use of wait() and notify(). I've never encountered it in 21+ years of Java.
There is 1 advantage to using synchronized void blah() over void blah() { synchronized(this) { and that is your resulting bytecode will be 1 byte shorter, since the synchronization will be part of the method signature instead of an operation by itself. This may influence the chance to inline the method by the JIT compiler. Other than that there is no difference.
The best option is to use an internal private final Object lock = new Object() to prevent someone from potentially locking your monitor. It achieves the same result without the downside of the evil outside locking. You do have that extra byte, but it rarely makes a difference.
So I would say no, don't use the synchronized keyword in the signature. Instead, use something like
public class ThreadedClass implements Runnable{
private final Object lock = new Object();
public void run(){
synchronized(lock) {
while(true)
//do some stuff in a thread
}
}
}
}
Edit in response to comment:
Consider what synchronization does: it prevents other threads from entering the same code block. So imagine you have a class like the one below. Let's say the current size is 10. Someone tries to perform an add and it forces a resize of the backing array. While they're in the middle of resizing the array, someone calls a makeExactSize(5) on a different thread. Now all of a sudden you're trying to access data[6] and it bombs out on you. Synchronization is supposed to prevent that from happening. In multithreaded programs you simply NEED synchronization.
class Stack {
int[] data = new int[10];
int pos = 0;
void add(int inc) {
if(pos == data.length) {
int[] tmp = new int[pos*2];
for(int i = 0; i < pos; i++) tmp[i] = data[i];
data = tmp;
}
data[pos++] = inc;
}
int remove() {
return data[pos--];
}
void makeExactSize(int size) {
int[] tmp = new int[size];
for(int i = 0; i < size; i++) tmp[i] = data[i];
data = tmp;
}
}
Why? Minimal extra safety and I don't see any plausible scenario where it would make a difference.
Why not? It's not standard. If you are coding as part of a team, when some other member sees your synchronized run he'll probably waste 30 minutes trying to figure out what is so special either with your run or with the framework you are using to run the Runnable's.
From my experience, it's not useful to add "synchronized" keyword to run() method. If we need synchronize multiple threads, or we need a thread-safe queue, we can use more appropriate components, such as ConcurrentLinkedQueue.
Well you could theoretically call the run method itself without problem (after all it is public). But that doesn't mean one should do it. So basically there's no reason to do this, apart from adding negligible overhead to the thread calling run(). Well except if you use the instance multiple times calling new Thread - although I'm a) not sure that's legal with the threading API and b) seems completely useless.
Also your createThreadQueue doesn't work. synchronized on a non-static method synchronizes on the instance object (ie this), so all three threads will run in parallel.
Go through the code comments and uncomment and run the different blocks to clearly see the difference, note synchronization will have a difference only if the same runnable instance is used, if each thread started gets a new runnable it won't make any difference.
class Kat{
public static void main(String... args){
Thread t1;
// MyUsualRunnable is usual stuff, only this will allow concurrency
MyUsualRunnable m0 = new MyUsualRunnable();
for(int i = 0; i < 5; i++){
t1 = new Thread(m0);//*imp* here all threads created are passed the same runnable instance
t1.start();
}
// run() method is synchronized , concurrency killed
// uncomment below block and run to see the difference
MySynchRunnable1 m1 = new MySynchRunnable1();
for(int i = 0; i < 5; i++){
t1 = new Thread(m1);//*imp* here all threads created are passed the same runnable instance, m1
// if new insances of runnable above were created for each loop then synchronizing will have no effect
t1.start();
}
// run() method has synchronized block which lock on runnable instance , concurrency killed
// uncomment below block and run to see the difference
/*
MySynchRunnable2 m2 = new MySynchRunnable2();
for(int i = 0; i < 5; i++){
// if new insances of runnable above were created for each loop then synchronizing will have no effect
t1 = new Thread(m2);//*imp* here all threads created are passed the same runnable instance, m2
t1.start();
}*/
}
}
class MyUsualRunnable implements Runnable{
#Override
public void run(){
try {Thread.sleep(1000);} catch (InterruptedException e) {}
}
}
class MySynchRunnable1 implements Runnable{
// this is implicit synchronization
//on the runnable instance as the run()
// method is synchronized
#Override
public synchronized void run(){
try {Thread.sleep(1000);} catch (InterruptedException e) {}
}
}
class MySynchRunnable2 implements Runnable{
// this is explicit synchronization
//on the runnable instance
//inside the synchronized block
// MySynchRunnable2 is totally equivalent to MySynchRunnable1
// usually we never synchronize on this or synchronize the run() method
#Override
public void run(){
synchronized(this){
try {Thread.sleep(1000);} catch (InterruptedException e) {}
}
}
}

Categories

Resources