Can vertexes and edges in jGraphT be added parallely - java

I'm creating a graph in java using jGraphT and adding vertexes and edges from a list using a stream.
My question is:
Can I use stream().parallel() to add them faster?

No, at least not as far as I'm aware. Essentially, adding a vertex or edge boils down to 2 steps: (a) check whether the edge/vertex already exists and if not (b) add the edge/vertex. Depending on the type of graph, step (b) involves adding the object to the appropriate container that stores the edges/vertices. I'm not an expert on concurrent programming, but I don't see how a parallel stream can do the above faster.
I don't know exactly what your usecase is, or what you try to accomplish. There are however some optimized, special graph types in the jgrapht-opt package that might benefit you. The graph functionality doesn't change (i.e. you can run the same algorithms on them); only the way the graph is stored changes. Some storage mechanisms are more memory efficient, allowing you to store massive graphs using little memory. Other graphs, such as the sparse graphs, can be created quicker and access operations are also quicker, but these graphs are typically immutable, i.e. once created they cannot be changed. What you need really depends on your usecase.

Related

Lookup algorithm that returns regions?

I have a large list of regions with 2D coordinates. None of the regions overlap. The regions are not immediately adjacent to one another and do not follow a placement pattern.
Is there an efficient lookup algorithm that can be used to let me know what region a specific point will fall into? This seems like it would be the exact inverse of what a QuadTree is.
The data structure you need is called an R-Tree. Most RTrees permit a "Within" or "Intersection" query, which will return any geographic area containing or overlapping a given region, see, e.g. wikipedia.
There is no reason that you cannot build your own R-Tree, its just a variant on a balanced B-Tree which can hold extended structures and allows some overlap. This implementation is lightweight, and you could use it here by wrapping your regions in rectangles. Each query might return more than one result but then you could check the underlying region. Its probably an easier solution than trying to build a polyline-supporting R-tree version.
What you need, if I understand correctly, is a point location data structure that is, as you put it, somehow the opposite of quad or R-tree. In a point location data structure you have a set of regions stored, and the queries are of the form: given point p give me the region in which it is contained.
Several point location data structures exists, the most famous and the one that achieves the best performance is the Kirkpatrick's one also known as triangulation refinement and achieves O(n) space and O(logn) query time; but is also famous to be hard to implement. On the other hand there are several simpler data structures that achieves O(n) or O(nlogn) space but O(log^2n) query time, which is not that bad and way easier to implement, and for some is possible to reduce the query time to O(logn) using a method called fractional cascading.
I recommend you to take a look into chapter 6 of de Berg, Overmars, et al. Computational Geometry: Algorithms and Applications which explains the subject in a way very easy to grasp, though it doesn't includes Kirkpatrick's method, which you can find it in Preparata's book or read it directly from Kirkpatrick's paper.
BTW, several of this structures assumes that your regions are not overlapping but are expected to be adjacent (regions share edges), and the edges forms a connected graph, some times triangular regions are also assumed. In all cases you can extend your set of regions by adding new edges, but don't you worry for that, since the extra space needed will be still linear, since the final set of regions will induce a planar graph. So you can blindly extend your sets of regions without worrying with too much growth of space.

My own graph representation for Neo4j

I have a graph that I want to explore in different ways. This graph is going to be explored by users and I cannot know in advance what information they want to retrieve from the graph. I like Cypher very much and I was wondering if I can use it as a frond-end but using my own representation of the graph.
Let me explain that: I cannot transform my graph into a Neo4j Graph for performance reasons. Hence, I was thinking that maybe I can use Cypher and a modification of Neo4j to explore the graph using my own representation of Node, Labels, Properties and so on.
I think this solution would be good because I can:
Reuse the parser and semantic checker of the language
Partially reuse the optimization engine, let's say the platform independent part.
I was exploring the source code at github and it seems really coupled to a specific implementation.
My questions:
Are you aware of some project using Cypher/Neo4j like this?
Are you aware of another graph database with a good query language that can be used like that?
Any suggestions on how to address the modifications to Neo4J
Just to explain a little bit why I cannot copy the graph. It is a graph that is already produced by another system. It changes a lot an it has easily 10000 nodes, I cannot monitor the graph modification to update the graph because it is, once again, time consuming. Even worse, I have to provide a mechanism to query the graph every five seconds.

Immutable data structure replacement for arrays

What do you use when you need a immutable list with the fastest access/update? LinkedList can be slow if you have to access an element from the middle, and it's prohibitive to create and repopulate it. Binary trees? quadtrees?
If updating is very rare (or the collection is small), an array which you don't write to after intialization is worthwhile. The much lower constant factors (both in time and space) outweigh the linear time update in these cases.
Apart from that, there are a number of purely functional data structures which provide better bounds for these cases. 2-3 Finger Trees (the data structure behind Haskell's Data.Sequence) are one example. Another option are Clojure's vectors and related data structures (e.g. Relaxed Radix-Balanced Trees), which use trees with high fan-out (32 or more) to keep reads cheap and structural sharing to avoid too many copies.
All of these are moderately tricky to implement manually though, especially if performance is important, and I'm not aware of existing implementations (I don't think Clojure's vectors are easy or convenient to use from Java).
I'm not sure I understand what you're looking for but I'll try to give a couple of pointers based on some things I've seen in the standard classes:
CopyOnWriteArrayList is a mutable yet threadsafe list because it duplicates the internal array on updates. Perhaps you could adapt some ideas from that, although it's obviously not efficient for large lists.
ConcurrentHashMap implements similar ideas on a much more complicated structure. It divides the internal hash table into separate partitions, so that changes only need to lock access to the relevant partition.
For an immutable list you could do something similar: divide the list's internal array into several partitions and treat them all as immutable. When you need to change the list, you only need to clone one partition and the index of the partitions, which will be cheaper than duplicating the whole list.
AWTEventMulticaster achieves similar goals, but duplicates the absolute minimum. It's a clever binary tree. See the source.
With a smaller size of internal partition or block, you can get faster updates, but slower access in general. With a larger block (e.g., the entire array) you get slower updates but faster access.
If you really need fastest access and update, you have to use a mutable array.

Change data in array vs. creating a new array, Java

I'm working on a project where i need to plot some data. At the moment i keep all the data in an object and then give the pointer to this object to the graphs. But it is possible to dynamically change the data, whereas i need to change the data the graphs gets. So here is my question:
Should i create a new array every time i edit the data or and then change the pointers in the graphs or should i just change the data within the original array and the just repaint the graphs?
Using immutable data results in cleaner, more predictable API. If you mutate the array which is currently used by the graph API, nasty interactions are lurking just around the corner. This may lead to the graph API defensively copying the array internally; at that point you lose: you get more copying than you'd needed had you started with an immutable approach up front.
Keeping one single model is the preferred approach especially from the memory performance point of view. However, it may depend. If you use the same model somewhere else then you must ponder a little bit more.

Techniques for keeping data in the cache, locality?

For ultra-fast code it essential that we keep locality of reference- keep as much of the data which is closely used together, in CPU cache:
http://en.wikipedia.org/wiki/Locality_of_reference
What techniques are to achieve this? Could people give examples?
I interested in Java and C/C++ examples. Interesting to know of ways people use to stop lots of cache swapping.
Greetings
This is probably too generic to have clear answer. The approaches in C or C++ compared to Java will differ quite a bit (the way the language lays out objects differ).
The basic would be, keep data that will be access in close loops together. If your loop operates on type T, and it has members m1...mN, but only m1...m4 are used in the critical path, consider breaking T into T1 that contains m1...m4 and T2 that contains m4...mN. You might want to add to T1 a pointer that refers to T2. Try to avoid objects that are unaligned with respect to cache boundaries (very platform dependent).
Use contiguous containers (plain old array in C, vector in C++) and try to manage the iterations to go up or down, but not randomly jumping all over the container. Linked Lists are killers for locality, two consecutive nodes in a list might be at completely different random locations.
Object containers (and generics) in Java are also a killer, while in a Vector the references are contiguous, the actual objects are not (there is an extra level of indirection). In Java there are a lot of extra variables (if you new two objects one right after the other, the objects will probably end up being in almost contiguous memory locations, even though there will be some extra information (usually two or three pointers) of Object management data in between. GC will move objects around, but hopefully won't make things much worse than it was before it run.
If you are focusing in Java, create compact data structures, if you have an object that has a position, and that is to be accessed in a tight loop, consider holding an x and y primitive types inside your object rather than creating a Point and holding a reference to it. Reference types need to be newed, and that means a different allocation, an extra indirection and less locality.
Two common techniques include:
Minimalism (of data size and/or code size/paths)
Use cache oblivious techniques
Example for minimalism: In ray tracing (a 3d graphics rendering paradigm), it is a common approach to use 8 byte Kd-trees to store static scene data. The traversal algorithm fits in just a few lines of code. Then, the Kd-tree is often compiled in a manner that minimalizes the number of traversal steps by having large, empty nodes at the top of tree ("Surface Area Heuristics" by Havran).
Mispredictions typically have a probability of 50%, but are of minor costs, because really many nodes fit in a cache-line (consider that you get 128 nodes per KiB!), and one of the two child nodes is always a direct neighbour in memory.
Example for cache oblivious techniques: Morton array indexing, also known as Z-order-curve-indexing. This kind of indexing might be preferred if you usually access nearby array elements in unpredictable direction. This might be valuable for large image or voxel data where you might have 32 or even 64 bytes big pixels, and then millions of them (typical compact camera measure is Megapixels, right?) or even thousands of billions for scientific simulations.
However, both techniques have one thing in common: Keep most frequently accessed stuff nearby, the less frequently things can be further away, spanning the whole range of L1 cache over main memory to harddisk, then other computers in the same room, next room, same country, worldwide, other planets.
Some random tricks that come to my mind, and which some of them I used recently:
Rethink your algorithm. For example, you have an image with a shape and the processing algorithm that looks for corners of the shape. Instead of operating on the image data directly, you can preprocess it, save all the shape's pixel coordinates in a list and then operate on the list. You avoid random the jumping around the image
Shrink data types. Regular int will take 4 bytes, and if you manage to use e.g. uint16_t you will cache 2x more stuff
Sometimes you can use bitmaps, I used it for processing a binary image. I stored pixel per bit, so I could fit 8*32 pixels in a single cache line. It really boosted the performance
Form Java, you can use JNI (it's not difficult) and implement your critical code in C to control the memory
In the Java world the JIT is going to be working hard to achieve this, and trying to second guess this is likely to be counterproductive. This SO question addresses Java-specific issues more fully.

Categories

Resources