public abstract class Vehicle{
private String vehicleName;
public class Vehicle(String vehicleName){
this.vehicleName = vehicleName;
}
public void drive();
}
#Component("Car")
public class Car implements vehicle(){
public Car(String carName){
super(carName);
}
}
Here, My requirement is i want to set object name dynamically, i.e. as per above code, my reference to Car class is going to the name which i pass to #Component, and i want reference to Car class to be carName property from Car class.
Kindly suggest if it is possible or not.
Note - I dont want #Component name to be from any properties file, i want it from my existing car object.
According to your example, the short answer is 'NO'.
What you need to understand is #Component will creates a singleton bean, which will be initialized when the application context startup (unless you lazy initialize it). So you cannot really create a spring bean whenever you want.
Also note that these singleton beans should be stateless (only state they have is a shared state).
Since you haven't provide what is your real requirement, I suggest you to look at this bean scope documentation. It might be useful to you. Cheers!
The "#Component" is a Spring concept to create a reusable and injectable component to another (and whatever) Spring Bean.
It should not be used for a POJO.
#Component is to detect the custom beans, in your which is registering the component with Car as name, so as it is became a reference you are not allowed to change the Component name in runtime.
Related
I have a postgres database which stores (as a String) the relevant class to use dependent on the information coming in from the user.
e.g. user has input Name, the database has the value NameFinder() stored against this and the code needs to create an instance of NameFinder().
I was wondering if there was a way of using reflection to instantiate this class as an #Autowired component, and then call the relevant function.
I can't seem to find a guide that uses #Autowired classes so any help would be appreciated.
For autowiring to work you need the class which uses #Autowired to be a #Component (or a child like #Service ...). https://www.baeldung.com/spring-autowire
For Spring to know what to inject, you need to define a #Bean in your Configuration
https://www.baeldung.com/spring-bean
As for the reflective instantiation in the bean:
#Bean
public Name getName(Database db) {
String nameFqn = db.getConfigTable().getNameFQN();
return (Name) Class.forName(nameFqn).getConstructor().newInstance();
}
Note this uses a no-arg public constructor. FQN means fully-qualified name, i.e. com.some.pkg.NameFinder
assuming:
package com.some.pkg;
class NameFinder implements Name {
public NameFinder(){}
}
I feel like a Spring Bean should be configurable also directly from a FQN without using reflection but I don't know how. Try reading up on a BeanFactory or something similar. Usually reflection is to be avoided.
I need to dynamically Inject a variable group of classes in my application. The purpose is, as the application grows, only have to add more classes inheriting the same interface. This is easy to do with tradicional java as I just need to search for all classes in a package and perform a loop to instantiate them. I want to do it in CDI. For example:
public MyValidatorInterface {
public boolean validate();
}
#Named
MyValidator1 implements MyValidatorInterface
...
#Named
MyValidator2 implements MyValidatorInterface
...
Now the ugly non real java code just to get the idea of what I want to do:
public MyValidatorFactory {
for (String className: classNames) {
#Inject
MyValidatorInterface<className> myValidatorInstance;
myValidatorInstance.validate();
}
}
I want to loop over all implementations found in classNames list (all will be in the same package BTW) and Inject them dynamically so if next week I add a new validator, MyValidator3, I just have to code the new class and add it to the project. The loop in MyValidatorFactory will find it, inject it and execute the validate() method on the new class too.
I have read about dynamic injection but I can't find a way to loop over a group of class names and inject them just like I used to Instantiate them the old way.
Thanks
What you are describing is what Instance<T> does.
For your sample above, you would do:
`#Inject Instance<MyValidatorInterface> allInstances`
Now, allInstances variable contains all your beans which have the given Type (MyValidatorInterface). You can further narrow down the set by calling select(..) based on qualifiers and/or class of bean. This will again return an Instance but with only a subset of previously fitting beans. Finally, you call get() which retrieves the bean instance for you.
NOTE: if you call get() straight away (without select) in the above case, you will get an exception because you have two beans of given type and CDI cannot determine which one should be used. This is implied by rules of type-safe resolution.
What you most likely want to know is that Instance<T> also implements Iterable so that's how you get to iterate over the beans. You will want to do something like this:
#Inject
Instance<MyValidatorInterface> allInstances;
public void validateAll() {
Iterator<MyValidatorInterface> iterator = allInstances.iterator();
while (iterator.hasNext()) {
iterator.next().callYourValidationMethod();
}}
}
I have a Spring based Java application where a lot of classes use the following autowired interface.. they work off this interface at all places.
#Autowired
private IOperatingSystemManager m_operatingSystemManager;
Right now, there is only one implementation of the interface as follows:
#Component
public class WindowsManager implements IOperatingSystemManager
{
// Windows based shenanigans
}
And the application works as expected. Spring is happy. Everybody is happy.
Alright, not everybody...
So, I want to add another concrete implementation of IOperatingSystemManager ..
#Component
public class LinuxManager implements IOperatingSystemManager
{
// Linux based shenanigans
}
What we want is the auto wiring of IOperatingSystemManager conditionally based on a properties file setting. (say.. os=windows.. basically something that is an arbitrary string and cannot be derived from system properties etc. simply because this is a dummy example. the actual managers are not OS related.)
I don't want to change any of the classes who have autowired to the interface and are working off the interface. All I need is for Spring to look at some logic that will dictate the Autowiring of the variables and wire up the right concrete instance for:
#Autowired
IOperatingSystemManager m_operatingSystemManager
at all the gazillion places.
The documentation & web search talk about profiles, condition, bean factory, qualifiers etc.. but we don't want to use Profiles; and Qualifiers seem to be needing changes to all the interface variable annotations.
Factory methods look promising, but being new to Spring, couldn't find a crisp answer.
What is a simple and recommended way to achieve this?
Instead of scanning the WindowsManager class, create one concrete instance that implements the IOperatingSystemManager interface or another one, depending on the your logical conditions.
First, remove the #Component annotation from the WindowsManager class.
Then, create and scan this #Configuration class, which will act as a factory for your beans:
#Configuration
public class OperatingSystemManagerFactory {
#Bean
public IOperatingSystemManager getOperatingSystemManager() {
if ( /* some logic that evaluates to true if windows */ ) {
return new WindowsManager();
} else {
// Linux default option ;)
return new LinuxManager();
}
}
}
With this solution, you shouldn't need to update anyone of your classes that reference the IOperatingSystemManager interface.
I dont know which version of spring you are using but you have options for this
http://www.intertech.com/Blog/spring-4-conditional-bean-configuration/
Here, as you can see, you can create a bean based on a condition that you can decide. It actully gave your example, Windows and Linux :), so i believe thats what you are looking for.
Edit:
If you are using spring-boot, you have some other Conditional annotations
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-auto-configuration.html#boot-features-condition-annotations
I'm just learning spring, and something struck me as very odd about the annotation configurations using the name attribute as a string.
#Bean(name = "com.my.injected.Service")
public InjectedService injectedService() {
return injectedService;
}
Is this name similar to the Spring Bean XML configuration id and class attributes?
<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</bean>
Why isn't this simply
#Bean(clazz = com.my.injected.Service.class)
public InjectedService injectedService() {
return injectedService;
}
instead?
You're fully qualifying the path in both cases and actually using the class makes it way easier for your IDE to tell you when you've screwed it up. I understand that the XML configuration came first, and naturally it was always looking up things by string, so is this just a holdover? Is there some advantage to using strings or major disadvantage to using .class?
Question was originally based on a false premise. I edited it to spell out what this premise was and make it less confusing for new people who come along. Hopefully I did this such that the given answers are still exactly applicable; apologies if not.
#Bean annotation is meant to provide a spring bean. The type of the bean to provide will be the same type of the class/interface you define in the return method. So, instead of declaring to return a concrete class in the method, return the top (abstract) class/interface instead.
Imagine this case:
public interface MyEntityDao {
MyEntity get(String id);
}
#Repository
public class MyEntityDaoDatabaseImpl implements MyEntityDao {
#Override
public MyEntity get(String id) {
/* implementation that goes to database every time */
}
}
#Repository
public class MyEntityDaoCacheImpl implements MyEntityDao {
#Override
public MyEntity get(String id) {
/* implementation that looks the data
up in cache, never in database */
}
}
#Configuration
public class MyAppConfiguration {
#Bean
public MyEntityDaoDatabaseImpl method1() {
return new MyEntityDaoDatabaseImpl();
}
#Bean
public MyEntityDaoCacheImpl method2() {
return new MyEntityDaoCacheImpl();
}
}
#Service
public class MyEntityService {
#Autowired //what to inject here?
MyEntityDao dao;
}
In case above, there are two implementations of the proposed interface. How the framework may be able to understand which implementation to use except for the name?
#Service
public class MyEntityService {
#Autowired
#Qualifier("properBeanNameToInject")
MyEntityDao dao;
}
Bean name is not necessarily related to its class or even any of interfaces it implements. It is a name and nothing more. When you use the annotation configuration, Spring figures out what the exact class or interface the #Bean provides like the rest of java code would: either through the fully qualified name in the code or through the imports specified in the file. In your case, you presumably have an import com.my.injected.Service; statement at the top of the java file.
Your example is using the fully qualified class name as the bean name. It is your choice. You could use any other identifier. Using the fully qualified name could be useful if your code is providing an object that is named exactly like another 3rd party #Bean object that your code must include or consume. However, you could just as easily use name = "myService".
The bean name helps Spring (and application programmer) to distinguish between multiple instances of of the same bean class because you can deploy the same class as bean several times. If only one instance of bean type appear you event do not have to give it name manually: spring does this by default.
If you have several beans that have the same type or implement the same interface and you want to refer specific bean use #Qualifier annotation.
Background: I'm using Google Guice and so it's easier to pass through the configuration class but I think this is not the best way.
I have a configuration class which stores some paths:
class Configuration{
String getHomePath();
String getUserPath();
}
Also I have a class "a" which needs the "homepath" and a class "b" which needs the "userpath".
Is it better to pass the configuration class through the constructor of class a and b or only pass through the specific path?
If you're really using Guice correctly all your configuration like this should appear in modules' configure method. So:
Remove the configuration class.
Create annotation classes, probably called HomePath and UserPath.
Where class a uses getHomePath() replace that with a String field member named homePath.
Where class b uses getUserPath() replace that with a String field member named userPath.
Modify the class a and b constructors to be #Inject annotated (should already be) and take in a String parameter, respectively annotated with #HomePath and #UserPath and assign the String field member that injected value.
Create bindings in your module's configure method use .annotatedWith() which define correct values; if they're only available at run time, bind a provider.
E.G.
class a {
private String homePath;
#Inject
public a(#HomePath String homePath) {
this.homePath = homePath;
}
public String tellMeAboutHome() {
return "We live in a nice home called " + homePath;
}
}
class customModule extends AbstractModule {
public static final String userPath = "/home/rafael";
public void configure() {
bind(String.class).annotatedWith(HomePath.class).to("/home/");
bind(String.class).annotatedWith(UserPath.class).to(userPath);
}
}
If creating annotations is too much work for you, use the #Named annotation Guice ships with.
There's no single answer to your question, there are only options to choose from, based on your specific situation.
If you know your Configuration class is going to grow AND if it's likely for your A and B classes will use more from it, then pass the whole Configuration object to their constructors. NB: I know this is against the YAGNI principle but sometimes you may know you're gonna need it ;-)
Otherwise, you can consider using #Named injection of your paths so that you reduce A and B classes dependencies to their minimum, which is a good design practice.
The general rule is code to make the dependency graph (which classes know about or depend on other classes/ interfaces) as simple, regular and fixed as possible.
If not passing the Configuration class makes a or b have zero dependencies on on user-written classes, or is necessary to avoid a dependency loop, then use the individual path strings. Otherwise, if it makes more sense to say 'this class has access to configuration info, in a way that may change in the future', pass the class.
I'd avoid the singleton approach, especially if you already have Guice set up.