Need to get the accurate steps in google fit android, that how can we get the real steps in google fit if possible, how can we make the progress.
real steps max accuracy, using location are how to filter those steps to calculate.
Google fit works on Step Detector sensor. Step detector does not give any value for the initial few meters because it observes the sensitivity and patterns first and then emits values.
To increase step counting accuracy, you should integrate Acceleromter sensor with Step Detector in a way that if Step Detector is not giving any value take values from Accelerometer.
Related
I've been struggling for a while with this, I'm currently using Estimote Beacon on Android and I'm collecting their RSSI and TxPower to calculate their range. Once I got this data and I know their position (latitude, longitude, altitude), I need to calculate my rough position for an Indoor Location purpose.
All the solution provided only are either for three single points or doesn't work. There must be an existing Java Solution somewhere since it's a common problem.
Now I know that this was asked before but no answer really helped me in my case. Here is a resume of some of them:
- Solution using three points only:
Trilateration Method Android Java
Multi-point trilateration algorithm in Java
Trilateration Method Android Java
- Solution I've tried but gets me a wrong result
Trilateration Java Algorithm
Another side question If I might ask, What unit of measure should I use for the distance when I'm calculating this? I though it would be the same result whatever distance unit I was using but It turned out the result vary a lot depending if I plug meter or kilometer...
I'm trying to compare multiple algorithms that are used to smooth GPS data. I'm wondering what should be the standard way to compare the results to see which one provides better smoothing.
I was thinking on a machine learning approach. To crate a car model based on a classifier and check on which tracks provides better behaviour.
For the guys who have more experience on this stuff, is this a good approach? Are there other ways to do this?
Generally, there is no universally valid way for comparing two datasets, since it completely depends on the applied/required quality criterion.
For your appoach
I was thinking on a machine learning approach. To crate a car model
based on a classifier and check on which tracks provides better
behaviour.
this means that you will need to define your term "better behavior" mathematically.
One possible quality criterion for your application is as follows (it consists of two parts that express opposing quality aspects):
First part (deviation from raw data): Compute the RMSE (root mean squared error) between the smoothed data and the raw data. This gives you a measure for the deviation of your smoothed track from the given raw coordinates. This means, that the error (RMSE) increases, if you are smoothing more. And it decreases if you are smoothing less.
Second part (track smoothness): Compute the mean absolute lateral acceleration that the car will experience along the track (second deviation). This will decrease if you are smoothing more, and it will increase if you are smoothing less. I.e., it behaves in contrary to the RMSE.
Result evaluation:
(1) Find a sequence of your data where you know that the underlying GPS track is a straight line or where the tracked object is not moving. Note, that for those tracks, the (lateral) acceleration is zero by definition(!).
For these, compute RMSE and mean absolute lateral acceleration.
The RMSE of appoaches that have (almost) zero acceleration results from measurement inaccuracies!
(2) Plot the results in a coordinate system with the RMSE on the x axis and the mean acceleration on the y axis.
(3) Pick all approaches that have an RMSE similar to what you found in step (1).
(4) From those approaches, pick the one(s) with the smallest acceleration. Those give you the smoothest track with an error explained through measurement inaccuracies!
(5) You're done :)
I have no experience on this topic but I have few things in mind that may help you.
You know it is a car. You know that the data is generated from a car so you can define a set of properties of a car. For example if a car is moving with speed above 50km than the angle of the corner should be at least 110 degrees. I am absolutely guessing with the values but if you do a little research i am sure you will be able to define such properties. Next thing you can do is to test how each approximation fits the car properties and choose the best one.
Raw data. I assume you are testing all methods on a part of given road. You can generate a "raw gps track" - a track that best fits the movement of a car. Google maps may help you to generate such track os some gps devise with higher accuracy. Than you measure the distance between each approximation and your generated track - the one with the min distance wins.
i think you easily match the coordinates after the address conversion.
because address have street,area and city. so you can easily match the different radius.
let try this link
Take a look at this paper that discusses comparing machine learning algorithms:
"Choosing between two learning algorithms
based on calibrated tests" available at:
http://www.cs.waikato.ac.nz/ml/publications/2003/bouckaert-calibrated-tests.pdf
Also check out this paper:
"Bayesian Comparison of Machine Learning Algorithms on Single and
Multiple Datasets" available at:
http://www.jmlr.org/proceedings/papers/v22/lacoste12/lacoste12.pdf
Note: It is noted from the question that you are looking into the best way to compare the results for machine learning algorithms and are not looking for additional machine learning algorithms that may implement this feature.
Machine Learning is not an well suited approach for that task, you would have to define what is good smoothing...
Principially your task cannot be solved by an algorithm that gives an general answer because every smoothing destroy the original data by some amount and adds invented positions, and different systems/humans that use the smoothed data react differently on that changed data.
The question is: What do you want to achieve with smoothing?
Why do you need smoothing? (have you forgotten to implement or enable a stand still filter that eliminates movement while the vehicle is standing still, which in GPS introduces jumping location during stand still?)
The GPS chip has already built in a (best possible?) real time smoothing using a Kalman filter, having on the one side more information than a post processed smotthing algo, on the other side it has less.
So next you have to ask yourself: do you compare post processing smooting algos or real time algos? (probably post processing) Comparing a real time smoothing algorithm with a post process smoothing algorithm is not fair.
Again: What do you expect from smoothed data: That they look somewhat fine, but unrealistic like photoshopped models for tv-advertisments?
What is good smoothing? near to real vehicle postion which nobody ever knows, or a curve whith low acceleration?
I would prefer an smoothing algorithm that produces the curve most near to the real (usually unknown) vehicle trajectory.
Or you might just think it should somehow look beautifull: In that case overlay the curves with different colors, display it on a satelitte image map, and let a team of humans (experts at least owning and driving an own car) decide what looks good and realistic.
We humans have the best multi purpose pattern matching algorithm built in.
Again why smooth?: for display in a map to please humans that look at that map?
or to use the smoothed tracks to feed other algorithms that have problems with the original data?
To please humans I have given an answer above.
To please other algorithms:
What they need? nearer positions? or better course value / direction between points.
What attributes do you want to smooth: only the latitude, longitude coordinates, or also the speed value, and course value?
I have much professional experience with GPS tracks, and recommend, to just remove every location under 7km/h and keep the rest as it is. In most cases there is no need for further smoothing.
Otherwise it gets expensive:
A possible solution:
1) You arrange a 2000€ Reference GPS receiver delivered with a magnetic vehicle roof antenna (E.g Company hemisphere 2000 GPS receiver) and use that as reference
2) You use a comnsumer GPS usually used for your task (smartphone, etc.)
Both mounted inside the car: drive some test tracks, in good conditions (highways) but more tracks at very bad: strong curves combined with big houses left and right. And through tunnel, a struight and a curved one, if you have one.
3) apply the smoothing algoritms to the consumer GPS tracks
4) compare the smoothed to the reference track, by matching two positions and finally calulate the (RMSE Root mean squared error)
Difficulties
matching two positions: Hopefully the time can be exactly matched which is usually not the case (0,5s offset possible).
Think what do you do when having an GPS outage.
Consider first to display a raw track and identify what kind of unsmoothed data is not suitable/ nice looking. (Probably later posting the pics here)
what about using the good old Kalman Filter!
I am a novice at HMMs but I have tried to build a code using Jahmm for the UCI Human Activity Recognition data set. The data set has 561 features and 7352 rows, and also includes the xyz inertial values of both the accelerometer and gyroscope, and it is mainly for recognizing 6 activities: Walking, Walking Upstairs, Walking Downstairs, Sitting, Standing, and Laying. The data is normalized [-1,1], but not z-scaled. I can only get decent results after scaling (scale() function in R). After scaling, I have tried PCA, correlation of 90+%, and randomForest importance measures with mtry=8 for dimensional reduction, but so far, randomForest was the only one that seemed to work, but results are still quite low (80%). Also, sometimes, some activities give NaN values when run on the Jahmm code.
According to what I've read about HMMs so far, these results are too low. Should I do more preprocessing before I use the said dimension reduction techniques? Is there a particular dimension reduction technique that is compatible with HMMs? Am I overfitting it? or am I better off making it discrete instead of continuous? I really have to do Activity Recognition and HMMs for my project. I would be so glad to get suggestions/feedback from people who have already tried Jahmm and R for continuous HMMs. It would also be great if someone could suggest a package/library that uses log probabilities and gives off a viterbi sequence from a fitted HMM given a new set of test data.
I use the FFT function from the Libgdx library for a project in Android, where I process the accelerometer signal for create a signal spectrum.
I need to normalize the output from accelerometer data, i read there isn't a "correct" way to do this but is conventional. Someone use dividing by 1/N in FFT, other by 1/sqrt(N).
I didn't understand if this is conventional for who implements the library, this mean that every library have his normalization factor, or is conventional for the user than I can decide for aesthetic representation.
If it depends on library, which is the normalization factor for FFT in LIBGDX library?
Edit1: I searched already inside documentation but I found nothing. Here is it: http://libgdx-android.com/docs/api/com/badlogic/gdx/audio/analysis/FFT.html
I was about to say "just check the documentation", but it turns out that it's terrible, and doesn't say one way or the other!
Still, you could determine the scale factor empirically. Just run an FFT on all-ones dataset. There will be one non-zero bin in the output. There are three likely values of this bin:
1.0: The scale was 1/N
sqrt(N): The scale was 1/sqrt(N)
N: The scale was 1
You can do the same trick for the inverse FFT, although it's redundant. The forward and inverse scale factors must multiply to 1/N.
There's a specific normalization depending on if you want the spectrum or power spectral density. Oli provided a good test for determining the 1/N, 1/sqrt(N) or no scaling that the library performs.
Here's a document that explains everything in great detail along with a comprehensive comparison of window functions.
http://edoc.mpg.de/395068
My goal is to recognize simple gestures from accelerometers mounted on a sun spot. A gesture could be as simple as rotating the device or moving the device in several different motions. The device currently only has accelerometers but we are considering adding gyroscopes if it would make it easier/more accurate.
Does anyone have recommendations for how to do this? Any available libraries in Java? Sample projects you recommend I check out? Papers you recommend?
The sun spot is a Java platform to help you make quick prototypes of systems. It is programmed using Java and can relay commands back to a base station attached to a computer. If I need to explain how the hardware works more leave a comment.
The accelerometers will be registering a constant acceleration due to gravity, plus any acceleration the device is subjected to by the user, plus noise.
You will need to low pass filter the samples to get rid of as much irrelevant noise as you can. The worst of the noise will generally be higher frequency than any possible human-induced acceleration.
Realise that when the device is not being accelerated by the user, the only force is due to gravity, and therefore you can deduce its attitude in space. Moreover, when the total acceleration varies greatly from 1g, it must be due to the user accelerating the device; by subtracting last known estimate of gravity, you can roughly estimate in what direction and by how much the user is accelerating the device, and so obtain data you can begin to match against a list of known gestures.
With a single three-axis accelerometer you can detect the current pitch and roll, and also acceleration of the device in a straight line. Integrating acceleration minus gravity will give you an estimate of current velocity, but the estimate will rapidly drift away from reality due to noise; you will have to make assumptions about the user's behaviour before / between / during gestures, and guide them through your UI, to provide points where the device is not being accelerated and you can reset your estimates and reliably estimate the direction of gravity. Integrating again to find position is unlikely to provide usable results over any useful length of time at all.
If you have two three-axis accelerometers some distance apart, or one and some gyros, you can also detect rotation of the device (by comparing the acceleration vectors, or from the gyros directly); integrating angular momentum over a couple of seconds will give you an estimate of current yaw relative to that when you started integrating, but again this will drift out of true rapidly.
Since no one seems to have mentioned existing libraries, as requested by OP, here goes:
http://www.wiigee.org/
Meant for use with the Wiimote, wiigee is an open-source Java based implementation for pattern matching based on accelerometer readings. It accomplishes this using Hidden Markov Models[1].
It was apparently used to great effect by a company, Thorn Technologies, and they've mentioned their experience here : http://www.thorntech.com/2013/07/mobile-device-3d-accelerometer-based-gesture-recognition/
Alternatively, you could consider FastDTW (https://code.google.com/p/fastdtw/). It's less accurate than regular DTW[2], but also computationally less expensive, which is a big deal when it comes to embedded systems or mobile devices.
[1] https://en.wikipedia.org/wiki/Hidden_Markov_model
[2] https://en.wikipedia.org/wiki/Dynamic_time_warping
EDIT: The OP has mentioned in one of the comments that he completed his project, with 90% accuracy in the field and a sub-millisecond compute time, using a variant of $1 Recognizer. He also mentions that rotation was not a criteria in his project.
What hasn't been mentioned yet is the actual gesture recognition. This is the hard part. After you have cleaned up your data (low pass filtered, normalized, etc) you still have most of the work to do.
Have a look at Hidden Markov Models. This seems to be the most popular approach, but using them isn't trivial. There is usually a preprocessing step. First doing STFT and clustering the resultant vector into a dictionary, then feeding that into a HMM. Have a look at jahmm in google code for a java lib.
Adding to moonshadow's point about having to reset your baseline for gravity and rotation...
Unless the device is expected to have stable moments of rest (where the only force acting on it is gravity) to reset its measurement baseline, your system will eventually develop an equivalent of vertigo.